【題目】如圖是我縣新區(qū)部分小區(qū)位置簡圖.設(shè)港澳城為點A,水榭花都為點B,朝陽家園為點C,濱海華庭為點D,陽光家園為點E,盛世嘉苑為點F,設(shè)每個小格的單位為1

1)請建立適當?shù)钠矫嬷苯亲鴺讼,并寫出六個小區(qū)的坐標;

2)依次連接點AC、EB,請求出四邊形ACEB的面積.

【答案】1)見解析,A(12),B(3,0),C(2,0)D(0,﹣1),E(0,﹣2),F(2,﹣2);(2)見解析,10

【解析】

1)以BC所在直線為x軸,以DE所在直線為y軸,建立直角坐標系即可;

2)根據(jù)S四邊形ACEBSABC+SBCE求得即可.

解:(1)建立平面直角坐標系如圖所示:

A(﹣1,2),B(﹣3,0),C2,0),D0,﹣1),E0,﹣2),F(﹣2,﹣2);

2S四邊形ACEBSABC+SBCE×5×2+10

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知⊙OΔADB的外接圓,∠ADB的平分線DCAB于點M,交⊙O于點C,連接AC,BC.

(1)求證:AC=BC;

(2)如圖2,在圖1 的基礎(chǔ)上做⊙O的直徑CFAB于點E,連接AF,過點A作⊙O的切線AH,若AH//BC,求∠ACF的度數(shù);

(3)在(2)的條件下,若ΔABD的面積為,ΔABDΔABC的面積比為2:9,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像過點,,與軸交于另一點,且對稱軸是直線.

(1)求該二次函數(shù)的解析式;

(2)若上的一點,作,當面積最大時,求的坐標;

(3)軸上的點,過軸,與拋物線交于,過軸于.當以為頂點的三角形與、、為頂點的三角形相似時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標原點,A點坐標為(-10,0),對角線ACOB相交于點DAC·OB=160.若反比例函數(shù)y=(x<0)的圖象經(jīng)過點D,并與BC的延長線交于點E,SOCESOAB=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A13千米,導航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點O(0,0)B(1,2)

1)若點Ay軸上,且三角形AOB的面積為2,求點A的坐標;

2)若點C的坐標為(3,0),BDOC,且BDOC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點E,作EDEBAB于點D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們規(guī)定:當x取任意一個值時,x對應(yīng)的函數(shù)值分別為y1y2,若y1≠y2,取y1y2中較小值為M;若y1=y2,記M=y1=y2①當x>2時,M=y2②當x<0時,Mx的增大而增大;③使得M大于4x的值不存在;④若M=2,則x=1.上述結(jié)論正確的是_____(填寫所有正確結(jié)論的序號).

查看答案和解析>>

同步練習冊答案