如圖,在平面直角坐標(biāo)系中,直數(shù)學(xué)公式與雙曲線數(shù)學(xué)公式相交于第一象限內(nèi)的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應(yīng)的一次函數(shù)的解析式以及它與x軸的交點E的坐標(biāo).

解:∵四邊形ABOC是正方形,
∴AC=AB,
∴設(shè)A的坐標(biāo)是(a,a),
代入y=得:a=,
∵A在第一象限,
∴a=4,
即A(4,4),
代入y=x+b得:4=×4+b
b=-2,
即直線所對應(yīng)的一次函數(shù)的解析式為y=x-2;
當(dāng)y=0時,0=x-2,
x=,
∴E的坐標(biāo)是(,0).
分析:根據(jù)正方形性質(zhì)設(shè)A(a,a),代入反比例函數(shù)解析式,求出a,得出A的坐標(biāo),把A的坐標(biāo)代入一次函數(shù)解析式,即可求出解析式,把y=0代入解析式,即可求出E的坐標(biāo).
點評:本題考查了一次函數(shù)與反比例函數(shù)的交點問題,用待定系數(shù)法求一次函數(shù)的解析式,一次和圖象上點的坐標(biāo)特征等知識點,主要考查學(xué)生運用這些知識進行計算的能力,題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案