從方程組中求出x和y的關(guān)系。(用含x的代數(shù)式表示y或用含y的代數(shù)式表示x)

 

答案:
解析:

 


提示:

代入消去t。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

我國著名數(shù)學(xué)家蘇步青在訪問德國時,德國一位數(shù)學(xué)家給他出了這樣一道題目:
甲、乙二人相對而行,他們相距10千米,甲每小時走3千米,乙每小時走2千米,甲帶著一條狗,狗每小時跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時候向甲跑去,碰到甲的時候又向乙跑去,問當(dāng)甲、乙兩人相遇時,這條狗一共跑了多少千米?
蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計算狗從甲的身邊跑到乙的身邊的路程s,再計算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時間與狗所走的時間相等,即10÷(3+2)=2(小時),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
蘇步青教授在解題時,把注意力和著眼點放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時間,恰好是甲、乙二人相遇所用的時間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對于某些數(shù)學(xué)問題,靈活運用整體思想,?苫y為易,捷足先登.在解二元一次方程組時,也要注意這種思想方法的應(yīng)用.
比如解方程組
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程組的解為
x=2
y=-
1
2

同學(xué)們,你會用同樣的方法解下面兩個方程嗎?試試看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一次探究性活動中,教師提出了問題:已知矩形的長和寬分別是2和1,是否存在另一個矩形,它的周長和面積分別是已知矩形周長和面積的2倍?設(shè)所求矩形的長和寬分別為x,y
(1)小明從“圖形”的角度來研究:所求矩形的周長應(yīng)滿足關(guān)系式①
y=-x+6
y=-x+6
,面積應(yīng)滿足關(guān)系式②
y=
4
x
y=
4
x
,在同一坐標(biāo)系中畫出①②的圖象,觀察所畫的圖象,你能得出什么結(jié)論?
(2)小麗從“代數(shù)”的角度來研究:由題意可列方程組
y=-x+6
y=
4
x
y=-x+6
y=
4
x
,解這個方程組,你能得出什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我國著名數(shù)學(xué)家蘇步青在訪問德國時,德國一位數(shù)學(xué)家給他出了這樣一道題目:
甲、乙二人相對而行,他們相距10千米,甲每小時走3千米,乙每小時走2千米,甲帶著一條狗,狗每小時跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時候向甲跑去,碰到甲的時候又向乙跑去,問當(dāng)甲、乙兩人相遇時,這條狗一共跑了多少千米?
蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計算狗從甲的身邊跑到乙的身邊的路程s,再計算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時間與狗所走的時間相等,即10÷(3+2)=2(小時),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
蘇步青教授在解題時,把注意力和著眼點放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時間,恰好是甲、乙二人相遇所用的時間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對于某些數(shù)學(xué)問題,靈活運用整體思想,?苫y為易,捷足先登.在解二元一次方程組時,也要注意這種思想方法的應(yīng)用.
比如解方程組數(shù)學(xué)公式
解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-數(shù)學(xué)公式
所以方程組的解為數(shù)學(xué)公式
同學(xué)們,你會用同樣的方法解下面兩個方程嗎?試試看!
(1)數(shù)學(xué)公式(2)數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江西省期末題 題型:探究題

探索一個問題:
  “任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”(閱讀(1)完成后面的問題)
   1) .當(dāng)已知矩形A的邊長分別為6和1時,小亮同學(xué)是這樣研究的:設(shè)所求矩形的兩邊分別是,
     由題意得方程組:,
    消去y化簡得:
     ∵△=49-48>0
     ∴ ∴滿足要求的矩形B存在;
  2).如果已知矩形A的邊長分別為2和1,請你仿照小亮的方法研究是否存在滿足要求的矩形B.
  3).對上述(2)中問題,小明同學(xué)從“圖形”的角度,利用函數(shù)圖象給予了解決.小明論證的過程開始是這樣的:如果用x、y分別表示矩形的長和寬,那么矩形B滿足x+y=,xy=1.請你按照小明的論證思路完成后面的論證過程. 
 
 4).如圖,在同一平面直角坐標(biāo)系中畫出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結(jié)合剛才的研究,回答下列問題:   
    ①.這個圖象所研究的矩形A的兩邊長為___ __和__ ___;  
    ②.滿足條件的矩形B的兩邊長為___ __和___ __.

查看答案和解析>>

同步練習(xí)冊答案