【題目】(知識(shí)背景)

我們?cè)诘谑徽隆度切巍分袑W(xué)習(xí)了三角形的邊與角的性質(zhì),在第十二章《全等三角形》中學(xué)習(xí)了全等三角形的性質(zhì)和判定,在十三章《軸對(duì)稱》中學(xué)習(xí)了等腰三角形的性質(zhì)和判定.在一些探究題中經(jīng)常用以上知識(shí)轉(zhuǎn)化角和邊,進(jìn)而解決問(wèn)題.

1.(問(wèn)題初探)

如圖(1),ABC中,∠BAC90°ABAC,點(diǎn)DBC上一點(diǎn),連接AD,以AD為一邊作ADE,使∠DAE90°ADAE,連接BE,猜想BECD有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.

2.(類比再探)

如圖(2),ABC中,∠BAC90°,ABAC,點(diǎn)MAB上一點(diǎn),點(diǎn)DBC上一點(diǎn),連接MD,以MD為一邊作MDE,使∠DME90°,MDME,連接BE,則∠EBD________.(直接寫(xiě)出答案,不寫(xiě)過(guò)程,但要求作出輔助線)

3.(方法遷移)

如圖(3),ABC是等邊三角形,點(diǎn)DBC上一點(diǎn),連接AD,以AD為一邊作等邊三角形ADE,連接BE,則BE、BC之間有怎樣的數(shù)量關(guān)系?________(直接寫(xiě)出答案,不寫(xiě)過(guò)程).

4.(拓展創(chuàng)新)

如圖(4),ABC是等邊三角形,點(diǎn)MAB上一點(diǎn),點(diǎn)DBC上一點(diǎn),連接MD,以MD為一邊作等邊三角形MDE,連接BE.猜想∠EBD的度數(shù),并說(shuō)明理由.

【答案】【問(wèn)題初探】BE=CD,理由見(jiàn)解析;【類比再探】,如圖所示,理由見(jiàn)解析;【方法遷移】BE=CD,理由見(jiàn)解析;【拓展創(chuàng)新】,理由見(jiàn)解析

【解析】

1.【問(wèn)題初探】根據(jù)已知條件易證得,從而得到結(jié)論;

2.【類比再探】根據(jù)四點(diǎn)共圓的判定和性質(zhì),即可得到結(jié)論;

3.【方法遷移】根據(jù)已知條件易證得,從而得到結(jié)論;

4.【拓展創(chuàng)新】根據(jù)四點(diǎn)共圓的判定和性質(zhì),即可得到結(jié)論.

1.【問(wèn)題初探】BE=CD,理由是:

∵∠EAD=∠BAC=90,即:∠1+∠BAD=∠2+∠BAD=90

∴∠1=∠2

又∵ADAE,ABAC,

BE=CD;

2.【類比再探】,如圖所示:

都是等腰直角三角形,

∴∠MED=∠MBD=45,

B、DM、E四點(diǎn)共圓,

根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ),

EBD180-EMD,

故答案是:

3.【方法遷移】BE=CD,理由是:

∵∠EAD=∠BAC=60,即:∠1+∠BAD=∠2+∠BAD=60,

∴∠1=∠2

又∵ADAE,ABAC

,

BE=CD;

4.【拓展創(chuàng)新】,理由是:

都是等邊三角形,

∴∠MED=∠MBD=60

B、D、M、E四點(diǎn)共圓,如圖所示:

根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ),

EBD180-EMD,

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:一個(gè)自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為下滑數(shù)(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個(gè),恰好是下滑數(shù)的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為更好地開(kāi)展傳統(tǒng)文化進(jìn)校園活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類型(分為書(shū)法、圍棋、戲劇、國(guó)畫(huà)共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.

最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表

根據(jù)以上信息完成下列問(wèn)題:

(1)直接寫(xiě)出頻數(shù)分布表中a的值;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛(ài)圍棋的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角ABC中,∠C=90°,∠A=30°,AB=4,以AC為腰,在ABC外作頂角為30°的等腰三角形ACD,連接BD.請(qǐng)畫(huà)出圖形,并直接寫(xiě)出BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰直角△ABC,△MAD中,∠BAC=∠DMA=90°,連接BM,CD.且B,M,D三點(diǎn)共線

(1)當(dāng)點(diǎn)D,點(diǎn)M在BC邊下方,CDBD時(shí),如圖,求證:BM+CD=AM;(提示:延長(zhǎng)DB到點(diǎn)N,使MN=MD,連接AN.)

(2)當(dāng)點(diǎn)D在AC邊右側(cè),點(diǎn)M在ABC內(nèi)部時(shí),如圖;當(dāng)點(diǎn)D在AB邊左側(cè),點(diǎn)M在ABC外部時(shí),如圖,請(qǐng)直接寫(xiě)出線段BM,CD,AM之間的數(shù)量關(guān)系,不需要證明;

(3)在(1),(2)條件下,點(diǎn)E是AB中點(diǎn),MF是AMD的角平分線,連接EF,若EF=2MF=6,則CD=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請(qǐng)你用其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,構(gòu)造一個(gè)真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(-5,5),(-2,3)

1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)畫(huà)出平面直角坐標(biāo)系xOy;

2)請(qǐng)畫(huà)出ABC關(guān)于y軸對(duì)稱的A1B1C1,并寫(xiě)出頂點(diǎn)A1,B1,C1的坐標(biāo)

3)請(qǐng)?jiān)?/span>x軸上求作一點(diǎn)P,使PB1C的周長(zhǎng)最小.請(qǐng)標(biāo)出點(diǎn)P的位置(保留作圖痕跡,不需說(shuō)明作圖方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,),拋物線y1的頂點(diǎn)為G,GMx軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對(duì)稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點(diǎn)T,使TAC是等腰三角形?若存在,請(qǐng)求出所有點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)P為拋物線y1上一動(dòng)點(diǎn),過(guò)點(diǎn)Py軸的平行線交拋物線y2于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對(duì)稱點(diǎn)為R,若以P,Q,R為頂點(diǎn)的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖△ABC和△CDE均為等邊三角形,B、CD三點(diǎn)在同一條直線上,連接線段BEAD交于點(diǎn)F,連接CF,

1)求證:∠FBC=FAC.

2)求∠BFC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案