【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長交AD的延長線于點(diǎn)E,連接AC.若∠ABC=110°,∠BAC=20°,則∠E的度數(shù)為(
A.60°
B.55°
C.50°
D.45°

【答案】C
【解析】解:∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°, ∴∠ADC=180°﹣∠ABC=180°﹣110°=70°.
∵且 = ,∠BAC=20°,
∴∠DCE=∠BAC=20°,
∴∠E=∠ADC﹣∠DCE=70°﹣20°=50°.
故選C.
【考點(diǎn)精析】利用圓心角、弧、弦的關(guān)系和圓內(nèi)接四邊形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個圓,一只電子跳蚤在標(biāo)有數(shù)字的五個點(diǎn)上跳躍.若它停在奇數(shù)點(diǎn)上時,則一次沿順時針方向跳兩個點(diǎn);若停在偶數(shù)點(diǎn)上時,則下一次沿逆時針方向跳一個點(diǎn).若這只跳蚤從1這點(diǎn)開始跳,則經(jīng)過2019次跳后它所停在的點(diǎn)對應(yīng)的數(shù)為( )

A. 1 B. 2 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進(jìn)價分別為200,170元的A,B兩種型號的電風(fēng)扇表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進(jìn)價、售價均保持不變利潤=銷售收入-進(jìn)貨成本)

(1)A,B兩種型號的電風(fēng)扇的銷售單價.

(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30A種型號的電風(fēng)扇最多能采購多少臺?

(3)(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校少年宮數(shù)學(xué)課外活動初三小組的同學(xué)為測量一座鐵塔AM的高度如圖,他們在坡度是i=1:2.5的斜坡DE的D處,測得樓頂?shù)囊苿油ㄓ嵒捐F塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識很快計算出了鐵塔高AM.親愛的同學(xué)們,相信你也能計算出鐵塔AM的高度!請你寫出解答過程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)

如圖,已知ABCDBE、CF分別平分∠ABC和∠DCB,求證:BECF

證明:∵ABCD,(已知)

∴∠_______=∠__________________________________

__________________________________________,(已知)

∴∠EBC=_______,(角平分線定義)

同理,∠FCB=______________

∴∠EBC=∠FCB.(等式性質(zhì))

BE//CF_____________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間有22名工人,每人每天可生產(chǎn)1200個螺釘或2000個螺母,1個螺釘需配2個螺母為使生產(chǎn)的螺釘和螺母剛好配套,若設(shè)x名工人生產(chǎn)螺釘,依題意列方程為( )

A. 1200x=2000(22-x) B. 1200x=22000(22-x)

C. 1200(22-x)=2000x D. 21200x=2000(22-x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,…按如圖所示的方式放置在平面直角坐標(biāo)系中.點(diǎn)A1,A2,A3和點(diǎn)C1,C2,C3,…分別在直線y=x+1x軸上,則點(diǎn)Bn的坐標(biāo)是__________.(n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形OABC是菱形,點(diǎn)C在x軸上,AB交y軸于點(diǎn)H,AC交y軸于點(diǎn)M.已知點(diǎn)A(-3,4).

(1)求AO的長;

(2)求直線AC的解析式和點(diǎn)M的坐標(biāo);

(3)如圖2,點(diǎn)P從點(diǎn)A出發(fā),以每秒2個單位的速度沿折線A-B-C運(yùn)動,到達(dá)點(diǎn)C終止.設(shè)點(diǎn)P的運(yùn)動時間為t秒,△PMB的面積為S.

①求S與t的函數(shù)關(guān)系式;

②求S的最大值.

 

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30o,點(diǎn)A1、A2、A3 在射線ON上,點(diǎn)B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3、A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

同步練習(xí)冊答案