【題目】如圖,某校少年宮數(shù)學(xué)課外活動(dòng)初三小組的同學(xué)為測(cè)量一座鐵塔AM的高度如圖,他們?cè)谄露仁莍=1:2.5的斜坡DE的D處,測(cè)得樓頂?shù)囊苿?dòng)通訊基站鐵塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識(shí)很快計(jì)算出了鐵塔高AM.親愛(ài)的同學(xué)們,相信你也能計(jì)算出鐵塔AM的高度!請(qǐng)你寫(xiě)出解答過(guò)程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))
【答案】解:∵斜坡的坡度是i= ═ ,EF=2,
∴FD=2.5 EF=2.5×2=5,
∵CE=13,CE=GF,
∴GD=GF+FD=CE+FD=13+5=18.
在Rt△DBG中,
∵∠GDB=45°,
∴BG=GD=18,
在Rt△DAN中,
∵∠NAD=60°,ND=NG+GD=CH+GD=2+18=20,
∴AN=NDtan60°=20× =20 ,
∴AM=AN﹣MN=AN﹣BG=20 ﹣18≈17(米).
答:鐵塔高AC約17米
【解析】先根據(jù)DE的坡度i=1:2.5求出FD與EF的長(zhǎng),進(jìn)而可得出GD的長(zhǎng),在Rt△DBG中,由等腰直角三角形的性質(zhì)得出BG=GD,在Rt△DAN中,根據(jù)∠NAD=60°,ND=NG+GD=CH+GD可得出AN的長(zhǎng),再由AM=AN﹣MN=AN﹣BG可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解
∵<<,即2<<3.
∴的整數(shù)部分為2,小數(shù)部分為﹣2,
∴1<﹣1<2
∴﹣1的整數(shù)部分為1.
∴﹣1的小數(shù)部分為﹣2
解決問(wèn)題:已知:a是﹣3的整數(shù)部分,b是﹣3的小數(shù)部分,
求:(1)a,b的值;
(2)(﹣a)3+(b+4)2的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點(diǎn)坐標(biāo)分別是A(0,0),B(6,0),C(5,5).
(1)求三角形ABC的面積;
(2)如果三角形ABC的三個(gè)頂點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)增加3個(gè)單位長(zhǎng)度,得到三角形A1B1C1,試在圖中畫(huà)出三角形A1B1C1,并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(3)(2)中三角形A1B1C1與三角形ABC的大小、形狀有什么關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC,點(diǎn)D、F分別為線段AC、AB上兩點(diǎn),連接BD、CF交于點(diǎn)E.
(1)若BD⊥AC,CF⊥AB,若BE=4,CE=2,求CD:BF;
(2)若BD平分∠ABC,CF平分∠ACB,如圖2所示,猜想∠BEC與∠A的數(shù)量關(guān)系;并說(shuō)明理由.
(3)在(2)的條件下,若∠A=60°,試說(shuō)明:BC=BF+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在書(shū)寫(xiě)藝術(shù)字時(shí),常常運(yùn)用畫(huà)“平行線段”這種基本作圖方法,此圖是在書(shū)寫(xiě)字“M”:
(1)請(qǐng)從正面,上面,右側(cè)三個(gè)不同方向上各找出一組平行線段,并用字母表示出來(lái);
(2)EF與A′B′有何位置關(guān)系?CC′與DH有何位置關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點(diǎn),DG∥AC,EF∥BC,DG、EF相 交于點(diǎn)H.
(1)∠HDE與∠HED是否相等?并說(shuō)明理由.
解:∠HDE=∠HED.理由如下:
∵DG∥AC(已知)
∴ = ( )
∵ EF∥BC (已知)
∴ = ( )
又∵∠A=∠B (已知)
∴ = ( ).
(2)如果∠C=90°,DG、 EF有何位置關(guān)系?并仿照 (1)中的解答方法說(shuō)明理由.
解: .理由如下:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點(diǎn),且 = ,連接CF并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)E,連接AC.若∠ABC=110°,∠BAC=20°,則∠E的度數(shù)為( )
A.60°
B.55°
C.50°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖8,在平面直角坐標(biāo)系xOy中,A(0,8),B(0,4),點(diǎn)C在x軸的正半軸上,點(diǎn)D為OC的中點(diǎn).
(1)當(dāng)BD與AC的距離等于2時(shí),求線段OC的長(zhǎng);
(2)如果OE⊥AC于點(diǎn)E,當(dāng)四邊形ABDE為平行四邊形時(shí),求直線BD的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)的跳水隊(duì)被冠以“夢(mèng)之隊(duì)”的稱號(hào),他們輝煌的戰(zhàn)績(jī)鼓舞了幾代中國(guó)人.跳水運(yùn)動(dòng)員要在空中下落的短暫過(guò)程中完成一系列高難度的動(dòng)作.如果不考慮空氣阻力等其他因素影響,人體下落到水面所需要的時(shí)間t與下落的高度h之間應(yīng)遵循下面的公式:h=gt2(其中h的單位是米,t的單位是秒,g=9.8 m/s2).在一次3米板(跳板離地面的高度是3米)的訓(xùn)練中,運(yùn)動(dòng)員在跳板上跳起至高出跳板1.2米處下落,那么運(yùn)動(dòng)員在下落過(guò)程中最多有多長(zhǎng)時(shí)間完成動(dòng)作?(精確到0.01秒)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com