【題目】如圖,平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A、B分別在y軸、x軸的正半軸上.△AOB的兩條外角平分線交于點(diǎn)P,P在反比例函數(shù)y的圖象上.PA的延長(zhǎng)線交x軸于點(diǎn)C,PB的延長(zhǎng)線交y軸于點(diǎn)D,連接CD.
(1)求∠P的度數(shù)及點(diǎn)P的坐標(biāo);
(2)求△OCD的面積;
(3)△AOB的面積是否存在最大值?若存在,求出最大面積;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)∠MPN=90°,P(3,3).(2)9;(3)27﹣18.
【解析】
(1)如圖,作PM⊥OA于 M,PN⊥OB于N,PH⊥AB于H.利用全等三角形的性質(zhì)解決問(wèn)題即可.
(2)設(shè)OA=a,OB=b,則AM=AH=3-a,BN=BH=3-b,利用勾股定理求出a,b之間的關(guān)系,求出OC,OD即可解決問(wèn)題.
(3)設(shè)OA=a,OB=b,則AM=AH=3-a,BN=BH=3-b,可得AB=6-a-b,推出OA+OB+AB=6,可得,利用基本不等式即可解決問(wèn)題.
解:(1)如圖,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.
∴∠PMA=∠PHA=90°,
∵∠PAM=∠PAH,PA=PA,
∴△PAM≌△PAH(AAS),
∴PM=PH,∠APM=∠APH,
同理可證:△BPN≌△BPH,
∴PH=PN,∠BPN=∠BPH,
∴PM=PN,
∵∠PMO=∠MON=∠PNO=90°,
∴四邊形PMON是矩形,
∴∠MPN=90°,
∴∠APB=∠APH+∠BPH(∠MPH+∠NPH)=45°,
∵PM=PN,
∴可以假設(shè)P(m,m),
∵P(m,m)在上,
∴m2=9,
∵m>0,
∴m=3,
∴P(3,3).
(2)設(shè)OA=a,OB=b,則AM=AH=3﹣a,BN=BH=3﹣b,
∴AB=6﹣a﹣b,
∵AB2=OA2+OB2,
∴a2+b2=(6﹣a﹣b)2,
可得ab=6a+6b﹣18,
∴3a+3b﹣9ab,
∵PM∥OC,
∴,
∴,
∴OC,同法可得OD,
∴.
(3)設(shè)OA=a,OB=b,則AM=AH=3﹣a,BN=BH=3﹣b,
∴AB=6﹣a﹣b,
∴OA+OB+AB=6,
∴,
∴,
∴,
∴,
∴,
∴,
∴△AOB的面積的最大值為:27﹣18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊矩形鐵皮,長(zhǎng)12dm,寬4dm,在它的四角各切去一個(gè)同樣的正方形,然后將四周突出部分折起,制作一個(gè)無(wú)蓋方盒,如果要使制作的無(wú)蓋方盒的側(cè)面積.占矩形鐵皮面積的八分之五,設(shè)各角切去的正方形的邊長(zhǎng)為xdm.
(1)用含x的代數(shù)式表示,盒底的長(zhǎng)為______dm,盒底的寬為______dm;
(2)求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好地推進(jìn)太原市生活垃圾分類工作,改善城市生態(tài)環(huán)境,2019年12月17日,太原市政府召開(kāi)了太原市生活垃圾分類推進(jìn)會(huì),意味著太原垃圾分類戰(zhàn)役的全面打響.某小區(qū)準(zhǔn)備購(gòu)買(mǎi)兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買(mǎi)3個(gè)型垃圾箱和2個(gè)型垃圾箱共需540元,購(gòu)買(mǎi)2個(gè)型垃圾箱比購(gòu)買(mǎi)3個(gè)型垃圾箱少用160元.
(1)求每個(gè)型垃圾箱和型垃圾箱各多少元?
(2)該小區(qū)物業(yè)計(jì)劃用不多于2100元的資金購(gòu)買(mǎi)兩種型號(hào)的垃圾箱共20個(gè),則該小區(qū)最多可以購(gòu)買(mǎi)型垃圾箱多少個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)隨的增大而增大,那么反比例函數(shù)的關(guān)系式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角標(biāo)系中,拋物線C:y=與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為y軸正半軸上一點(diǎn).且滿足OD=OC,連接BD,
(1)如圖1,點(diǎn)P為拋物線上位于x軸下方一點(diǎn),連接PB,PD,當(dāng)S△PBD最大時(shí),連接AP,以PB為邊向上作正△BPQ,連接AQ,點(diǎn)M與點(diǎn)N為直線AQ上的兩點(diǎn),MN=2且點(diǎn)N位于M點(diǎn)下方,連接DN,求DN+MN+AM的最小值
(2)如圖2,在第(1)問(wèn)的條件下,點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為E,將△BOE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△B′O′E′,將拋物線y=沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過(guò)點(diǎn)E,此時(shí)拋物線C′與x軸的右交點(diǎn)記為點(diǎn)F,連接E′F,B′F,R為線段E’F上的一點(diǎn),連接B′R,將△B′E′R沿著B′R翻折后與△B′E′F重合部分記為△B′RT,在平面內(nèi)找一個(gè)點(diǎn)S,使得以B′、R、T、S為頂點(diǎn)的四邊形為矩形,求點(diǎn)S的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖所示,給出下列說(shuō)法:
①;②方程的根為,;③;④當(dāng)時(shí),隨值的增大而增大;⑤當(dāng)時(shí),.其中,正確的說(shuō)法有________(請(qǐng)寫(xiě)出所有正確說(shuō)法的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5 小時(shí)內(nèi)其血液中酒精含量 y(毫克/百毫升) 與時(shí)間 x(時(shí))的關(guān)系可近似地用二次函數(shù) y=﹣200x2+400x 刻畫(huà);1.5 小時(shí)后(包括 1.5 小時(shí))y 與 x 可近似地用反比例函數(shù) 刻畫(huà)(如圖所示)
(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少?
(2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于 20 毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上 20:00 在家喝完半斤低度白酒,第二天早上 7:00 能否駕車去上班?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年第六屆世界互聯(lián)網(wǎng)大會(huì)在烏鎮(zhèn)召開(kāi),小南和小西參加了某分會(huì)場(chǎng)的志愿服務(wù)工作,本次志愿服務(wù)工作一共設(shè)置了三個(gè)崗位,分別是引導(dǎo)員、聯(lián)絡(luò)員和咨詢員.請(qǐng)你用畫(huà)樹(shù)狀圖或列表法求出小南和小西恰好被分配到同一個(gè)崗位進(jìn)行志愿服務(wù)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com