如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,直線AN、MC交于點(diǎn)E,直線BM、CN交于點(diǎn)F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°,其他條件不變,在(2)中畫出符合要求的圖形,并判斷(1)(2)題中的兩結(jié)論是否依然成立.并說明理由.
考點(diǎn):全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì)
專題:
分析:(1)可通過全等三角形來得出簡(jiǎn)單的線段相等,證明AN=BM,只要求出三角形ACN和MCB全等即可,這兩個(gè)三角形中,已知的條件有AC=MC,NC=CB,只要證明這兩組對(duì)應(yīng)邊的夾角相等即可,我們發(fā)現(xiàn)∠ACN和∠MCB都是等邊三角形的外角,因此它們都是120°,這樣就能得出兩三角形全等了.也就證出了AN=BM.
(2)我們不難發(fā)現(xiàn)∠ECF=180-60-60=60°,因此只要我們?cè)僮C得兩條邊相等即可得出三角形ECF是等邊三角形,可從EC,CF入手,由(1)的全等三角形我們知道,∠MAC=∠BMC,又知道了AC=MC,∠MCF=∠ACE=60°,那么此時(shí)三角形AEC≌三角形MCF,可得出CF=CE,于是我們?cè)俑鶕?jù)∠ECF=60°,便可得出三角形ECF是等邊三角形的結(jié)論.
(3)判定結(jié)論1是否正確,也是通過證明三角形ACN和BCM來求得.這兩個(gè)三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此兩三角形就全等,AN=BM,結(jié)論1正確.如圖,當(dāng)把MC逆時(shí)針旋轉(zhuǎn)90°后,AC也旋轉(zhuǎn)了90°,因此∠ACB=90°,很顯然∠FCE>90°,因此三角形FCE絕對(duì)不可能是等邊三角形.
解答:證明:(1)∵△ACM,△CBN是等邊三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
AC=MC
∠ACN=∠MCB
NC=BC
,
∴△CAN≌△MCB(SAS),
∴AN=BM.

(2)∵△CAN≌△MCB,
∴∠CAN=∠CMB,
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,
∠CAE=∠CMF
CA=CM
∠ACE=∠MCF

∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF為等腰三角形,
又∵∠ECF=60°,
∴△CEF為等邊三角形.

(3)解:連接AN,BM,
∵△ACM、△CBN是等邊三角形,
∴AC=MC,BC=CN,∠ACM=∠BCN=60°,
∵∠ACB=90°,
∴∠ACN=∠MCB,
在△ACN和△MCB中,
AC=CM
∠ACN=∠MCB
BC=CN
,
∴△ACN≌△MCB(SAS),
∴AN=MB.
當(dāng)把MC逆時(shí)針旋轉(zhuǎn)90°后,AC也旋轉(zhuǎn)了90°,因此∠ACB=90°,很顯然∠FCE>90°,因此三角形FCE絕對(duì)不可能是等邊三角形,
即結(jié)論1成立,結(jié)論2不成立.
點(diǎn)評(píng):本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識(shí)點(diǎn),利用全等三角形來得出角和邊相等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果一個(gè)直角三角形的兩條直角邊分別為4a2、8(a+b),則此直角三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知有理數(shù)a、b滿足|a-2|+(b-3)2=0,則a+b=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若a2+b2=3ab,則(1+
2b3
a3-b3
)÷(1+
2b
a-b
)的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在矩形AOCB中,邊AO=2,OC=6,∠AOC的角平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒
2
個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線OC方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值;
(2)設(shè)△OPQ與梯形ODBC重疊部分面積為S,直接寫出S與t的關(guān)系式,并寫出t的取值范圍;
(3)求當(dāng)t為何值時(shí),△PQB為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(21+1)×(22+1)×(23+1)×…×(22013+1)的后三位數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)y=-10x+1000,設(shè)公司獲得的總利潤(rùn)(總利潤(rùn)=總銷售額-總成本)為P元.
(1)求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若總利潤(rùn)為5250元時(shí),銷售單價(jià)是多少?
(3)根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖的幾何體由棱長(zhǎng)為1厘米的正方體組成.
(1)該幾何體的表面積是
 
平方厘米;
(2)畫出該幾何體的三視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(12a2b6-4a7b5)÷
 
=6b4-2a5b3

查看答案和解析>>

同步練習(xí)冊(cè)答案