【題目】如圖(1),已知正方形ABCD在直線MN的上方,BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測(cè)∠FCN的度數(shù),并說明理由;
(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請(qǐng)用含a、b的代數(shù)式表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)舉例說明.
【答案】(1)見解析;(2)45°;(3).
【解析】試題分析:
(1)由正方形的性質(zhì),用SAS證明△BAE≌△DAG;
(2)作FH⊥MN于H,證明△EFH≌△ABE,再證△CHF是等腰直角三角形;
(3)結(jié)合(1)(2),可證明△EFH≌△GAD,△EFH∽△ABE,再用相似三角形的性質(zhì)得到結(jié)論.
試題解析:
(1)證明:∵四邊形ABCD和四邊形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG,
∴△BAE≌△DAG.
(2)解:∠FCN=45°,
理由是:作FH⊥MN于H,
∵∠AEF=∠ABE=90°,
∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,
∴∠FEH=∠BAE,
又∵AE=EF,∠EHF=∠EBA=90°,
∴△EFH≌△ABE,
∴FH=BE,EH=AB=BC,
∴CH=BE=FH,
∵∠FHC=90°,
∴∠FCN=45°.
(3)解:當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小總保持不變,
理由是:作FH⊥MN于H,
由已知可得∠EAG=∠BAD=∠AEF=90°,
結(jié)合(1)(2)得∠FEH=∠BAE=∠DAG,
又∵G在射線CD上,
∠GDA=∠EHF=∠EBA=90°,
∴△EFH≌△GAD,△EFH∽△ABE,
∴EH=AD=BC=b,
∴CH=BE,
∴;
在Rt△FEH中,tan∠FCN=,
∴當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小總保持不變,tan∠FCN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形CEFG繞正方形ABCD的頂點(diǎn)C旋轉(zhuǎn),連接AF,點(diǎn)M是AF中點(diǎn).
(1)當(dāng)點(diǎn)G在BC上時(shí),如圖2,連接BM、MG,求證:BM=MG;
(2)在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)B、G、F三點(diǎn)在同一直線上,若AB=5,CE=3,則MF= ;
(3)在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)G在對(duì)角線AC上時(shí),連接DG、MG,請(qǐng)你畫出圖形,探究DG、MG的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過點(diǎn)D作⊙O的切線交BC于點(diǎn)M,則DM的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某種新能源汽車的性能,對(duì)這種汽車進(jìn)行了抽檢,將一次充電后行駛的里程數(shù)分為A,B,C,D四個(gè)等級(jí),其中相應(yīng)等級(jí)的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)這次被抽檢的新能源汽車共有 輛;
(2)將圖1補(bǔ)充完整;在圖2中,C等級(jí)所占的圓心角是 度;
(3)估計(jì)這種新能源汽車一次充電后行駛的平均里程數(shù)為多少千米?(精確到千米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為K90的化學(xué)賽道,其中助滑坡AB長(zhǎng)90米,坡角a=40°,一個(gè)曲面平臺(tái)BCD連接了助滑坡AB與著陸坡,某運(yùn)動(dòng)員在C點(diǎn)飛向空中,幾秒之后落在著陸坡上的E處,已知著陸坡DE的坡度i=1: ,此運(yùn)動(dòng)員成績(jī)?yōu)?/span>DE=85.5米,BD之間的垂直距離h為1米,則該運(yùn)動(dòng)員在此比賽中,一共垂直下降了( )米.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,結(jié)果保留一位小數(shù))
A. 101.4 B. 101.3 C. 100.4 D. 100.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是某網(wǎng)絡(luò)公司員工月收人情況表.
月收入(元) | ||||||||
人數(shù) |
(1)求此公司員工月收人的中位數(shù);
(2)小張求出這個(gè)公司員工月收人平均數(shù)為元,若用所求平均數(shù)反映公司全體員工月收人水平,合適嗎?若不合適,用什么數(shù)據(jù)更好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=3cm,∠B=30°,點(diǎn)D在BC邊上由C向B勻速運(yùn)動(dòng)(D不與B、C重合),勻速運(yùn)動(dòng)速度為1cm/s,連接AD,作∠ADE=30°,DE交線段AC于點(diǎn)E.
(1)在此運(yùn)動(dòng)過程中,∠BDA逐漸變 (填“大”或“小”);D點(diǎn)運(yùn)動(dòng)到圖1位置時(shí),∠BDA=75°,則∠BAD= .
(2)點(diǎn)D運(yùn)動(dòng)3s后到達(dá)圖2位置,則CD= .此時(shí)△ABD和△DCE是否全等,請(qǐng)說明理由;
(3)在點(diǎn)D運(yùn)動(dòng)過程中,△ADE的形狀也在變化,判斷當(dāng)△ADE是等腰三角形時(shí),∠BDA等于多少度(請(qǐng)直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張對(duì)面互相平行的紙條折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論不正確的有( ).
A.B.∠AEC=148°C.∠BGE=64°D.∠BFD=116°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com