【題目】某廠設(shè)計(jì)了一款成本為20元∕件的公益用品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)認(rèn)真分析上表中的數(shù)據(jù),用你所學(xué)過的函數(shù)知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式.
(2)設(shè)該廠試銷該公益品每天獲得的利潤(rùn)為w元,當(dāng)銷售單價(jià)x定為多少時(shí),w有最大值?最大利潤(rùn)是多少?
(3)當(dāng)?shù)孛裾块T規(guī)定,若該廠銷售此公益品單價(jià)不低于成本價(jià)且不超過46元/件時(shí),該廠每銷售一件此公益品,國(guó)家就補(bǔ)貼該廠a元利潤(rùn)(a>4)。設(shè)日銷售利潤(rùn)為m元,公司通過銷售記錄發(fā)現(xiàn),m始終隨銷售單價(jià)x的增大而增大,求a的取值范圍.
【答案】(1)y=-10x+800 (2)50元/件;9000元 (3)60≥a≥8
【解析】
(1)直接運(yùn)用待定系數(shù)法根據(jù)統(tǒng)計(jì)表的數(shù)據(jù)就可以求出y與x之間的函數(shù)關(guān)系式;
(2)設(shè)工藝廠試銷該公益用品每天獲得的利潤(rùn)是W元,先表示出每件的利潤(rùn)為(x-20),再根據(jù)總利潤(rùn)=單價(jià)利潤(rùn)×銷售總量建立等式即可得出結(jié)論;
(3)設(shè)總利潤(rùn)為m元,根據(jù)條件可以得出每件工藝用品的利潤(rùn)為(x-20+a)元,再根據(jù)總利潤(rùn)=銷售總價(jià)-成本總價(jià)建立函數(shù)關(guān)系式即可.
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,根據(jù)統(tǒng)計(jì)表得,
解得:,故函數(shù)關(guān)系式是y=-10x+800;
(2)設(shè)工藝廠試銷該公益用品每天獲得的利潤(rùn)是W元,依題意得
W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000
則當(dāng)x=50時(shí),W有最大值9000.
故當(dāng)銷售單價(jià)定為50元∕件時(shí),工藝廠試銷該公益用品每天獲得的利潤(rùn)最大,最大利潤(rùn)是9000元.
(3)設(shè)日銷售利潤(rùn)為m元,則每件工藝用品的利潤(rùn)為(x-20+a)元,由題意,得
∵,
∴拋物線的開口向下,在對(duì)稱軸的左側(cè)m隨x的增大而增大,
∴時(shí),m有最大值,
∵日銷售利潤(rùn)m隨銷售單價(jià)x的增大而增大,且,
∴,解得,
又∵a>4
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能又環(huán)保的油電混合動(dòng)力汽車,既可以用油做動(dòng)力行駛,也可以用電做動(dòng)力行駛,某品牌油電混合動(dòng)力汽車從甲地行駛到乙地,若完全用油做動(dòng)力行駛,則費(fèi)用為80元;若完全用電做動(dòng)力行駛,則費(fèi)用為30元,已知汽車行駛中每千米用油費(fèi)用比用電費(fèi)用多0.5元.
(1)求:汽車行駛中每千米用電費(fèi)用是多少元?甲、乙兩地的距離是多少千米?
(2)若汽車從甲地到乙地采用油電混合動(dòng)力行駛,且所需費(fèi)用不超過50元,則至少需要用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.
(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);
(2)如圖2,將拋物線C1向下平移k(k>0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)△A′B′G′是等邊三角形時(shí),求k的值:
(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與△AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于⊙P及一個(gè)矩形給出如下定義:如果⊙P上存在到此矩形四個(gè)頂點(diǎn)距離都相等的點(diǎn),那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的頂點(diǎn)A的坐標(biāo)為(,),頂點(diǎn)C、D在x軸上,且OC=OD.
(1)當(dāng)⊙P的半徑為4時(shí),
①在P1(,),P2(,),P3(,)中可以成為矩形ABCD的“等距圓”的圓心的是 ;
②如果點(diǎn)P在直線上,且⊙P是矩形ABCD的“等距圓”,求點(diǎn)P的坐標(biāo);
(2)已知點(diǎn)P在軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒有公共點(diǎn),直接寫出點(diǎn)P的縱坐標(biāo)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達(dá)式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一款優(yōu)雅且穩(wěn)定的拋物線型落地?zé),防滑螺?/span>C為拋物線支架的最高點(diǎn),燈罩D距離地面1.86米,點(diǎn)最高點(diǎn)C距燈柱的水平距離為1.6米,燈柱AB及支架的相關(guān)數(shù)據(jù)如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為__米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),B點(diǎn)與C點(diǎn)是直線y=x﹣3與x軸、y軸的交點(diǎn).D為線段AB上一點(diǎn).
(1)求拋物線的解析式及A點(diǎn)坐標(biāo).
(2)若點(diǎn)D在線段OB上,過D點(diǎn)作x軸的垂線與拋物線交于點(diǎn)E,求出點(diǎn)E到直線BC的距離的最大值.
(3)D為線段AB上一點(diǎn),連接CD,作點(diǎn)B關(guān)于CD的對(duì)稱點(diǎn)B′,連接AB′、B′D
①當(dāng)點(diǎn)B′落坐標(biāo)軸上時(shí),求點(diǎn)D的坐標(biāo).
②在點(diǎn)D的運(yùn)動(dòng)過程中,△AB′D的內(nèi)角能否等于45°,若能,求此時(shí)點(diǎn)B′的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】月餅是久負(fù)盛名的中國(guó)傳統(tǒng)糕點(diǎn)之一,宋代大詩(shī)人蘇東坡有詩(shī)句“小餅如嚼月,中有酥和飴”贊美月餅.為滿足市場(chǎng)需求,某超市在“中秋節(jié)”來臨前夕,購(gòu)進(jìn)一種品牌月餅,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不低于45元且不超過58元,根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量(盒)與每盒售價(jià)(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤(rùn)(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙中,為直徑,、分別切⊙于點(diǎn)、.
(1)如圖①,若,求的大。
(2)如圖②,過點(diǎn)作∥,交于點(diǎn),交⊙于點(diǎn),若,求的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com