?ABCD中,O是對角線的交點,不能判定這個平行四邊形是正方形的是( 。
A.∠BAD=90°,AB=ADB.∠BAD=90°,AC⊥BD
C.AC⊥BD,AC=BDD.AB=AC,∠BAD=∠BCD
A:根據(jù)AB=AD可得出平行四邊形是菱形,再利用∠BAD=90°,能判定為正方形,故此選項不符合題意;
B:根據(jù)AC⊥BD可得出平行四邊形是菱形,再利用∠BAD=90°,能判定為正方形,故此選項不符合題意;
C:根據(jù)AC⊥BD可得出平行四邊形是菱形,再利用AC=BD,能判定為正方形,故此選項不符合題意;
D:根據(jù)AB=AD可得出平行四邊形是菱形,∠BAD=∠BCD是所有平行四邊形具有的性質(zhì),故不能判定是正方形,故此選項符合題意;
故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點.且規(guī)定,正方形的內(nèi)部不包含邊界上的點.觀察如圖所示的中心在原點、一邊平行于x軸的正方形:邊長為1的正方形內(nèi)部有1個整點,邊長為3的正方形內(nèi)部有9個整點,…,則邊長為8的正方形內(nèi)部整點個數(shù)為(  )
A.64B.49C.36D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,O為正方形ABCD的對角線AC與BD的交點,M、N兩點分別在BC與AB上,且OM⊥ON.
(1)試說明OM=ON;
(2)試判斷CN與DM的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,DEAC,AE=AC,AE與CD相交于F.
求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖1,正方形ABCD和正方形BEFG,三點A、B、E在同一直線上,連接AG和CE,
(1)判定線段AG和線段CE的數(shù)量有什么關(guān)系?請說明理由.
(2)將正方形BEFG,繞點順時針旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立?請說明理由.
(3)若在圖2中連接AE和CG,且AE=2CG=4,求正方形ABCD和正方形BEFG的面積之和為______.(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長為8cm,點E、F分別在邊BC、CD上,∠EAF=45°.當(dāng)EF=8cm時,△AEF的面積是______cm2;當(dāng)EF=7cm時,△EFC的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.
(1)求證:△ABE≌△CBF;
(2)若∠ABE=50°,求∠EGC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為1cm,E、F分別是BC、CD的中點,連接BF、DE,則圖中陰影部分的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

觀察下列“風(fēng)車”的平面圖案:其中是中心對稱圖形的有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案