【題目】如圖,已知RtABC中,∠ACB90°,CDABD,∠BAC的平分線分別交BC,CDEF

1)試說明△CEF是等腰三角形.

2)若點(diǎn)E恰好在線段AB的垂直平分線上,試說明線段AC與線段AB之間的數(shù)量關(guān)系.

【答案】(1)見解析(2)見解析

【解析】

1)首先根據(jù)條件∠ACB90°CDAB邊上的高,可證出∠B+BAC90°,∠CAD+ACD90°,再根據(jù)同角的補(bǔ)角相等可得到∠ACD=∠B,再利用三角形的外角與內(nèi)角的關(guān)系可得到∠CFE=∠CEF,最后利用等角對(duì)等邊即可得出答案;

2)線段垂直平分線的性質(zhì)得到AEBE,根據(jù)等腰三角形的性質(zhì)得到∠EAB=∠B,由于AE是∠BAC的平分線,得到∠CAE=∠EAB,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.

解:(1)∵∠ACB90°,

∴∠B+BAC90°,

CDAB,

∴∠CAD+ACD90°,

∴∠ACD=∠B,

AE是∠BAC的平分線,

∴∠CAE=∠EAB,

∵∠EAB+B=∠CEA,∠CAE+ACD=∠CFE,

∴∠CFE=∠CEF,

CFCE,

∴△CEF是等腰三角形;

2)∵點(diǎn)E恰好在線段AB的垂直平分線上,

AEBE

∴∠EAB=∠B,

AE是∠BAC的平分線,

∴∠CAE=∠EAB,

∴∠CAB2B

∵∠ACB90°,

∴∠CAB+B90°,

∴∠B30°

ACAB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某河道上有一個(gè)半圓形的拱橋,河兩岸筑有攔水堤壩.其半圓形橋洞的橫截面如圖所示.已知上、下橋的坡面線、與半圓相切,上、下橋斜面的坡度,橋下水深米.水面寬度米.設(shè)半圓的圓心為,直徑在坡角頂點(diǎn)的連線上.求從點(diǎn)上坡、過橋、下坡到點(diǎn)的最短路徑長(zhǎng).(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在平面直角坐標(biāo)系中,A,B,D 三點(diǎn)的坐標(biāo)是(0,2),(-2,0),(1,0),點(diǎn)C x 軸下方一點(diǎn),且 CDAD,BAD+BCD=180°,AD=CD

(1)求證:BD 平分∠ABC

(2)求四邊形 ABCD 的面積

(3)如圖 2BE 是∠ABO 的鄰補(bǔ)角的平分線,連接 AE,OE AB 于點(diǎn) F,若∠AEO=45°,求證:AF=AO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,小明按如下步驟作圖:

1)以點(diǎn)O為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交OAD,交OB于點(diǎn)E

2)分別以點(diǎn)D、E為圓心,大于的長(zhǎng)為半徑畫弧,兩弧在的內(nèi)部相交于點(diǎn)C

3)畫射線OC

根據(jù)上述作圖步驟,下列結(jié)論正確的有( )個(gè)

①射線OC的平分線;②點(diǎn)O和點(diǎn)C關(guān)于直線DE對(duì)稱;③射線OC垂直平分線段DE;④.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲隊(duì)成績(jī)的中位數(shù)是   分,乙隊(duì)成績(jī)的眾數(shù)是   分;

2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是   隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)和點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)相同,則點(diǎn)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC的底邊BC的長(zhǎng)為2cm,面積是6cm2,腰AB的垂直平分線EFAB于點(diǎn)E,交AC于點(diǎn)F.若DBC邊上的中點(diǎn),M為線段EF上一動(dòng)點(diǎn),則BDM的周長(zhǎng)最短為____________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊鐵皮,拱形邊緣呈拋物線狀,MN=4,拋物線頂點(diǎn)處到邊MN的距離是4,要在鐵皮上截下一矩形ABCD,使矩形頂點(diǎn)B、C落在邊MN上,AD落在拋物線上.

1)如圖建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線解析式;

2)設(shè)矩形ABCD的周長(zhǎng)為L,點(diǎn)C的坐標(biāo)為(m,0),求Lm的關(guān)系式(不要求寫自變量取值范圍).

3)問這樣截下去的矩形鐵皮的周長(zhǎng)能否等于9.5,若不等于9.5,請(qǐng)說明理由,若等于9.5,求出嗎的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地發(fā)生8.1級(jí)強(qiáng)烈地震,我國積極組織搶險(xiǎn)隊(duì)赴地震災(zāi)區(qū)參與搶險(xiǎn)工作.如圖,某探測(cè)隊(duì)在地面A,B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.51.7)

查看答案和解析>>

同步練習(xí)冊(cè)答案