【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.

(1)求證:∠DAF=∠CDE;

(2)求證:△ADF∽△DEC;

(3)若AE=6,AD=8,AB=7,求AF的長.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

1)先根據(jù)四邊形ABCD是平行四邊形,得出∠B=ADC,再由∠AFE=B可得出∠AFE=ADC,通過等量代換可得出∠DAF=CDE;
2)由四邊形ABCD是平行四邊形,可得出ADBC,∠ADE=CED,再根據(jù)∠DAF=∠CDE,故可得出結(jié)論;
3)先由四邊形ABCD是平行四邊形,可得出ADBC,CD=AB=4,再由AEBC,得出AEAD,由勾股定理求出DE的長,由△ADF∽△DEC可得出兩三角形的邊對應(yīng)成比例,進(jìn)而可得出AF的長.

解:(1)證明:

∵四邊形ABCD是平行四邊形

∴∠B=ADC

∵∠AFE=B,∴∠AFE=ADC

∵∠AFE=1+2,∠ADC=3+2

∴∠1+2=3+2,即∠1=3

∴∠DAF=CDE

2)證明:∵四邊形ABCD是平行四邊形

ADBC,∴∠2=4

由(1)得∠1=3 ∴△ADF∽△DEC

(3)AEBC,∴AEAD

DE=

由(2)可知:△ADF∽△DEC,CD=AB=7

AF=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點(diǎn)A順時針旋轉(zhuǎn)得到ADE(點(diǎn)B,C的對應(yīng)點(diǎn)分別是DE),當(dāng)點(diǎn)EBC邊上時,連接BD,若∠ABC30°,∠BDE10°,求∠EAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,OB=3OA,點(diǎn)M以每秒3個單位長度的速度從點(diǎn)A向右運(yùn)動.點(diǎn)N以每秒2個單位長度的速度從點(diǎn)O向右運(yùn)動(點(diǎn)M、點(diǎn)N同時出發(fā))

1)數(shù)軸上點(diǎn)B對應(yīng)的數(shù)是______

2)經(jīng)過幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?

3)當(dāng)點(diǎn)M運(yùn)動到什么位置時,恰好使AM=2BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項(xiàng)目對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

根據(jù)以上信息解決下列問題:

(1) ;

(2)扇形統(tǒng)計圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為

(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DFAE、BF相交于點(diǎn)O,下面四個結(jié)論:(1AE=BF,(2AEBF,(3AO=OE,(4SAOB=S四邊形DEOF,其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)AC分別在x軸和y軸正半軸上,點(diǎn)B坐標(biāo)為(3,3),拋物線y=﹣x2+bx+c過點(diǎn)AC,交x軸負(fù)半軸于點(diǎn)D,與BC邊的另一個交點(diǎn)為E,拋物線的頂點(diǎn)為M,對稱軸交x軸于點(diǎn)N

1)求拋物線的函數(shù)關(guān)系式;

2)點(diǎn)P在直線MN上,求當(dāng)PE+PA的值最小時點(diǎn)P的坐標(biāo);

3)如圖2,探索在x軸是否存在一點(diǎn)F,使∠CFO=CDO﹣CAO?若存在,求點(diǎn)F的坐標(biāo);不存在,說明理由;

4)將拋物線沿y軸方向平移m個單位后,頂點(diǎn)為Q,若QO平分∠CQN,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB交于點(diǎn)D,則AD的長為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一定數(shù)目的點(diǎn)或大小相同的圓在等距離的排列下可以形成一個等邊三角形數(shù)陣.古希臘著名數(shù)學(xué)家畢達(dá)哥拉斯用數(shù),,,,,……這些數(shù)量的(石子),都成功的排成了等邊三角形數(shù)陣..

(問題提出)結(jié)果等于多少?

在圖1所示的等邊三角形數(shù)陣中,前行有個圓圈,前行有個圓圈,即,前行有個圓圈,即,,則前行所有圓圈個數(shù)總和為

將圖1旋轉(zhuǎn)至圖2,觀察這兩個三角形數(shù)陣中同一行圓圈個數(shù)(如第行的圓圈個數(shù)分別為個,個),發(fā)現(xiàn)同一行圓圈個數(shù)之和均為___________個,由此可得兩個圖前行圓圈個數(shù)總和為:___________,因此,___________.

(問題延伸)結(jié)果等于多少?

3

4

在圖3所示的等邊三角形數(shù)陣中,第行圓圈中的數(shù)為,即,第行兩個圓圈中數(shù)字的和為.,第個圓圈中數(shù)字的和為(共個)..這樣,該三角形數(shù)陣中所有圓圈中數(shù)字的和為.

將該三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖4所示的三個三角形數(shù)陣,觀察這三個三角形數(shù)陣中各行同一位置上圓圈中的數(shù)字(如第行的第一個圓圈中的數(shù)字分別為,,),發(fā)現(xiàn)相同位置上三個圓圈中數(shù)字之和均為___________,由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)字的總和為:___________,因此,___________.

(規(guī)律應(yīng)用)

根據(jù)以上發(fā)現(xiàn),計算:的結(jié)果為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點(diǎn)P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(結(jié)果都保留根號)

(1)求點(diǎn)P到海岸線l的距離;

(2)小船從點(diǎn)P處沿射線AP的方向航行一段時間后,到點(diǎn)C處,此時,從B測得小船在北偏西15°的方向.求點(diǎn)C與點(diǎn)B之間的距離.

查看答案和解析>>

同步練習(xí)冊答案