【題目】平面內兩直線相交有______個交點,兩平面相交形成______條直線.
科目:初中數學 來源: 題型:
【題目】問題提出
某商店經銷《超能陸戰(zhàn)隊》超萌“小白”(圖1)玩具,“小白”玩具每個進價60元.為進行促銷,商店制定如下“優(yōu)惠”方案:如果一次銷售數量不超過10個,則銷售單價為100元/個;如果一次銷售數量超過10個,每增加一個,所有“小白”玩具銷售單價降低1元/個,但單價不得低于80元/個.一次銷售“小白”玩具的單價y(元/個)與銷售數量x(個)之間的函數關系如圖2所示.
(1)求m的值并解釋射線BC所表示的實際意義;
(2)寫出該店當一次銷售x個時,所獲利潤w(元)與x(個)之間的函數關系式;
(3)店長經過一段時間的銷售發(fā)現:即并不是銷量越大利潤越大(比如,賣25個賺的錢反而比賣30個賺的錢多).為了不出現這種現象,在其他條件不變的情況下,店長應把原來的最低單價80(元/個)至少提高到多少元/個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的圖像反映的過程是:甲乙兩人同時從地出發(fā),以各自的速度勻速向地行駛,甲先到地停留半小時后,按原路以另一速度勻速返回,直至與乙相遇.乙的速度為, 表示甲乙兩人相距的距離, 表示乙行駛的時間.現有以下個結論:①、兩地相距;②點的坐標為;③甲去時的速度為;④甲返回的速度是.以上個結論中正確的是_______________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現以八年級2班作為樣本,對該班學生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:
根據圖中提供的信息,解答下列問題:
(1)a= ,b= ;
(2)該校八年級學生共有600人,則該年級參加足球活動的人數約 人;
(3)該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結論中正確的有 (寫出所有正確結論的序號)
①△CMP∽△BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為;
⑤當△ABP≌△ADN時,BP=.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=BD;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD與菱形EFGH的對角線均交于點O,且EG∥BC,將矩形折疊,使點C與點O重合,折痕MN恰好過點G若AB=,EF=2,∠H=120°,則DN的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com