若點(diǎn)(-
1
π
,y1),(-π,y2),(a2+1,y3)都是反比例函數(shù)y=
12
x
上的點(diǎn),則下列各式中,正確的是( 。
A、y1>y2>y3
B、y2>y1>y3
C、y3>y1>y2
D、y3>y2>y1
分析:根據(jù)題意畫出反比例函數(shù)的圖象,結(jié)合函數(shù)的增減性解答即可.
解答:精英家教網(wǎng)解:∵k>0,函數(shù)圖象如圖,則圖象在第一、三象限,在每個(gè)象限內(nèi),y隨x的增大而減小,
又∵-π<-
1
π
<a2+1,∴y3>y2>y1
故選D.
點(diǎn)評:本題考查了由反比例函數(shù)的圖象確定y3,y2,y1的關(guān)系.注意反比例函數(shù)的增減性的敘述時(shí):在每個(gè)象限內(nèi),y隨x的增大而減。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)y=-
2
x
的圖象上,且x1<0<x2<x3,則y1、y2、y3的大小關(guān)系是(  )
A、y1<y3<y2
B、y2<y3<y3
C、y1<y2<y3
D、y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若點(diǎn)A(2,y1)、B(6,y2)在函數(shù)y=
12x
的圖象上,則y1
 
y2(填“<”或“>”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(1,2),B(3,2),C(5,7).若點(diǎn)M(-2,y1),N(-1,y2),K(8,y3)也在二次函數(shù)y=ax2+bx+c的圖象上,則y1,y2,y3從小到大的順序?yàn)?!--BA-->

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•和平區(qū)一模)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知拋物線C1:y=x2,點(diǎn)A(2,4).
(Ⅰ)求直線OA的解析式;
(Ⅱ)直線x=2與x軸相交于點(diǎn)B,將拋物線C1從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng),設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m.
①當(dāng)m為何值時(shí),線段PB最短?
②當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(Ⅲ)將拋物線C1作適當(dāng)?shù)钠揭,得拋物線C2:y=x2-x+c,若點(diǎn)D(x1,y1),E(x2,y2)在拋物線C2上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對稱,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

反比例函數(shù)y=-
3
x
,若點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函數(shù)y=-
3
x
圖象上的三點(diǎn),且x1>x2>0>x3,則y1、y2、y3的大小關(guān)系(  )

查看答案和解析>>

同步練習(xí)冊答案