【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)一點(diǎn),且PA=3,PB=1,PC= CD=2,CD⊥CP,求∠BPC的度數(shù)
【答案】135°
【解析】試題分析:根據(jù)同角的余角相等求出∠ACP=∠BCD,再利用“邊角邊”證明△ACP和△BCD全等,判斷出△PCD是等腰直角三角形,再根據(jù)全等三角形對應(yīng)邊相等可得AP=BD,然后利用勾股定理逆定理判斷出△BPD是直角三角形,∠BPD=90°,再根據(jù)∠BPC=∠BPD+∠CPD代入數(shù)據(jù)計(jì)算即可得解.
試題解析:
解:連接BD.
∵CD⊥CP,CP=CD=2,
∴△CPD為等腰直角三角形.
∴∠CPD=45°.
∵∠ACP+∠BCP=∠BCP+∠BCD=90°,
∴∠ACP=∠BCD.
∵CA=CB,
∴△CAP≌△CBD(SAS).
∴DB=PA=3.
在Rt△CPD中,DP2=CP2+CD2=22+22=8.
又∵PB=1,DB2=9,
∴DB2=DP2+PB2=8+1=9.
∴∠DPB=90°.
∴∠CPB=∠CPD+∠DPB=45°+90°=135°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1、x2 , 且x1≠x2 , 有下列結(jié)論:①x1=2,x2=3;②m> ;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0).其中,正確結(jié)論的個(gè)數(shù)是( 。
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的數(shù)學(xué)問題:“今有鳧(鳧:野鴨)起南海,七日至北海;雁起北海,九日至南海.今鳧雁俱起,問何日相逢?”意思是:野鴨從南海起飛,7天飛到北海;大雁從北海起飛,9天飛到南海.野鴨與大雁從南海和北海同時(shí)起飛,經(jīng)過幾天相遇.設(shè)野鴨與大雁從南海和北海同時(shí)起飛,經(jīng)過x天相遇,根據(jù)題意,下面所列方程正確的是( )
A. (9-7)x=1 B. (9-7)x=1 C. (+)x=1 D. (-)x=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司引進(jìn)A,B兩種機(jī)器人用來搬運(yùn)某種貨物,這兩種機(jī)器人充滿電后可以連續(xù)搬運(yùn)5小時(shí),A種機(jī)器人于某日0時(shí)開始搬運(yùn),過了1小時(shí),B種機(jī)器人也開始搬運(yùn),如圖,線段OG表示A種機(jī)器人的搬運(yùn)量yA(千克)與時(shí)間x(時(shí))的函數(shù)圖象,根據(jù)圖象提供的信息,解答下列問題:
(1)求yB關(guān)于x的函數(shù)解析式;
(2)如果A,B兩種機(jī)器人連續(xù)搬運(yùn)5小時(shí),那么B種機(jī)器人比A種機(jī)器人多搬運(yùn)了多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,將一塊直角三角板的直角頂點(diǎn)放在O處(注:∠DOE=90°).
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,且∠BOC=60°,求∠COE的度數(shù);
(2)如圖②,將三板DOE繞O逆時(shí)針轉(zhuǎn)動到某個(gè)位置時(shí),若恰好滿足5∠COD=∠AOE,且∠BOC=60°,求∠BOD的度數(shù);
(3)如圖③,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動到某個(gè)位置,若OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過點(diǎn)A(﹣ ,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個(gè)根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請直接寫出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,則△ABC的面積為( 。
A.2+
B.
C.2+ 或2﹣
D.4+2 或2﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com