【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實數(shù)根x1、x2 , 且x1≠x2 , 有下列結(jié)論:①x1=2,x2=3;②m> ;③二次函數(shù)y=(x-x1)(x-x2)+m的圖象與x軸交點的坐標(biāo)為(2,0)和(3,0).其中,正確結(jié)論的個數(shù)是( 。
A.0
B.1
C.2
D.3
【答案】C
【解析】一元二次方程(x-2)(x-3)=m化為一般形式得:x2-5x+6-m=0,
∵方程有兩個不相等的實數(shù)根x1、x2 , ∴b2-4ac=(-5)2-4(6-m)=4m+1>0,解得:m> ,故選項②正確;∵一元二次方程實數(shù)根分別為x1、x2 , ∴x1+x2=5,x1x2=6-m,而選項①中x1=2,x2=3,只有在m=0時才能成立,故選項①錯誤;二次函數(shù)y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),令y=0,可得(x-2)(x-3)=0,解得:x=2或3,∴拋物線與x軸的交點為(2,0)或(3,0),故選項③正確.綜上所述,正確的結(jié)論有2個:②③.故選C.
【考點精析】解答此題的關(guān)鍵在于理解拋物線與坐標(biāo)軸的交點的相關(guān)知識,掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( 。
A.6
B.3
C.﹣3
D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五個點,拋物線y=a(x-1)2+k(a>0)經(jīng)過其中的三個點.
(1)求證:C、E兩點不可能同時在拋物線y=a(x-1)2+k(a>0)上;
(2)點A在拋物線y=a(x-1)2+k(a>0)上嗎?為什么?
(3)求a和k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,E是AD邊上一點(點E與點A,D不重合).BE的垂直平分線交AB于M,交DC于N.
(1)設(shè)AE=x,四邊形ADNM的面積為S,寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)AE為何值時,四邊形ADNM的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場投入13 800元資金購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:
類別/單價 | 成本價 | 銷售價(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列網(wǎng)格中建立平面直角坐標(biāo)系如圖,每個小正方形的邊長均為1個單位長度.已知A(1,1)、B(3,4)和C(4,2).
(1)在圖中標(biāo)出點A、B、C.
(2)將點C向下平移3個單位到D點,將點A先向左平移3個單位,再向下平移1個單位到E點,在圖中標(biāo)出D點和E點.
(3)求△EBD的面積S△EBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,點E,O,F(xiàn)分別為AB,AC,AD的中點,連接CE,CF,OE,OF.
(1)求證:△BCE≌△DCF;
(2)當(dāng)AB與BC滿足什么關(guān)系時,四邊形AEOF是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)一點,且PA=3,PB=1,PC= CD=2,CD⊥CP,求∠BPC的度數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com