【題目】如圖,為的直徑,,是的兩條弦,過(guò)點(diǎn)作,交的延長(zhǎng)線與點(diǎn).
(1)求證:是的切線;
(2)若,求的值;
(3)在(2)的條件下,若,,求與的長(zhǎng).
【答案】(1)見解析;(2);(3).
【解析】
(1)連接OC,由∠A=∠1=∠2且∠2+∠OCB=90°知∠1+∠OCB=90°,據(jù)此即可得證;
(2)先△ADC∽△CDB得,且CD2=ADBD,設(shè)CD=4x,CA=4k,知AB=5k,從而得出(4x)2=3x(3x+5k),解關(guān)于x的方程,進(jìn)而得出答案;
(3)由(2)得AB=7、BD=9、CD=12,證DE是∠ADC的平分線知,求出AC=,EC=證得∠A+∠EDA=∠DEC=45°,作DH⊥AC,知△CDH為等腰直角三角形,由BC∥DH知∠CDH=∠1,據(jù)此得tan∠CDH==,繼而得DH=CD=,由DE=即可解答.
解:(1)如圖:
∵OA=OC,
∴∠A=∠2,
∵∠A=∠1,
∴∠1=∠2,
∵AB是⊙O的直徑,
∴∠ACB=90°,即∠2+∠OCB=90°,
∴∠1+∠OCB=90°,即∠OCD=90°,
∴CD是⊙O的切線;
(2),
∴,又∵,
∴,
∴,設(shè),
則,則,
解得:,,
∴
(3)由(2)知AB=5k=7知k=,則BD=9,CD=4x=4×k=4××=12,
∵∠CED=∠A+∠EDC=∠A+∠ADE,
∴∠EDC=∠ADE,即DE是∠ADC的平分線,
∴,
則,
∴
∵,,
且,
∴,
過(guò)點(diǎn)作交延長(zhǎng)線于點(diǎn),則為等腰直角三角形,
,
∴,,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程 的解為整數(shù),且不等式組 無(wú)解,則所有滿足條件的非負(fù)整數(shù)a的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,a),B(3,a),且頂點(diǎn)的縱坐標(biāo)為-4.
(1)求m,n和a的值;
(2)記二次函數(shù)圖象在點(diǎn)A,B間的部分為G (含點(diǎn)A和點(diǎn)B),若直線與圖象G有公共點(diǎn),結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為3的⊙O經(jīng)過(guò)等邊△ABO的頂點(diǎn)A、B,點(diǎn)P為半徑OB上的動(dòng)點(diǎn),連接AP,過(guò)點(diǎn)P作PC⊥AP交⊙O于點(diǎn)C,當(dāng)∠ACP=30°時(shí),AP的長(zhǎng)為( 。
A. 3B. 3或C. D. 3或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò),兩點(diǎn).將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到,點(diǎn)在拋物線上.
(1)求該拋物線的表達(dá)式;
(2)已知點(diǎn)在軸上(點(diǎn)不與點(diǎn)重合),連接,若與相似,試求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,對(duì)角線、交于點(diǎn),已知,.
(1)求的長(zhǎng);
(2)點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)的角度后得到對(duì)應(yīng)的線段(即),交于點(diǎn).
①當(dāng)為的中點(diǎn)時(shí),求的長(zhǎng);
②連接、,當(dāng)的長(zhǎng)度最小時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD,F(xiàn)是對(duì)角線AC上的一點(diǎn),過(guò)點(diǎn)D作DE∥AC,且DE=CF,連接AE、DE、EF.
(1)求證:△ADE≌△BCF;
(2)若∠BAF+∠AED=180°,求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)是線段的延長(zhǎng)線上的一動(dòng)點(diǎn),連接,過(guò)點(diǎn)作的平行線,與線段的延長(zhǎng)線交于點(diǎn),連接、.
求證:四邊形是平行四邊形.
若,,則在點(diǎn)的運(yùn)動(dòng)過(guò)程中:
①當(dāng)________時(shí),四邊形是矩形,試說(shuō)明理由;
②當(dāng)________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程恰有一個(gè)實(shí)根,則滿足條件的實(shí)數(shù)a的值的個(gè)數(shù)為( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com