在等邊三角形ABC的邊BA,CB,AC的延長(zhǎng)線上分別截取AA′=BB′=CC′,那么△A′B′C′是
等邊
等邊
三角形.
分析:因?yàn)椤鰽BC是等邊三角形,所以AB=BC=CA,∠ABC=∠BCA=∠CAB,又因?yàn)椤螦'AC'、∠C'CB'、∠B'BA'是△ABC的外角,所以∠A'AC'=∠C'CB'=∠B'BA',又AA′=BB′=CC′,所以A'B=B'C=C'A,所以△A'BB'≌△B'CC'≌△C'CA',根據(jù)全等三角形的性質(zhì),A'B'=B'C'=C'A',從而證得△A'B'C'是等邊三角形.
解答:解:如圖,
∵△ABC是等邊三角形,
∴∠ABC=∠BCA=∠CAB,
∴∠A'AC'=∠C'CB'=∠B'BA',
∵AA′=BB′=CC′,
∴A′B=B′C=C′A,
在△A'BB'和△B'CC'和△C'CA'中,
AA′=BB′=CC′ 
∠A′AC′=∠C′CB′=∠B′BA′
A′B=B′C=C′A
,
∴△A'BB'≌△B'CC'≌△C'CA'(SAS),
∴A'B'=B'C'=C'A',
∴△A'B'C'是等邊三角形.
故填:等邊.
點(diǎn)評(píng):本題考查了等邊三角形的判定.解題的關(guān)鍵是畫(huà)出圖形,根據(jù)圖形利用三角形全等證得等邊三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等邊三角形ABC的AC邊上取中點(diǎn)D,BC的延長(zhǎng)線上取一點(diǎn)E,使CE=CD.求證:BD=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、若點(diǎn)P在等邊三角形ABC的BC邊的垂直平分線上,則使△PAB、△PAC、△PBC均為等腰三角形的P點(diǎn)個(gè)數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊三角形ABC的AC邊上取中點(diǎn)D,BC的延長(zhǎng)線上取一點(diǎn)E,使CE=CD,求證:△BDE為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在等邊三角形ABC的三邊上,分別取點(diǎn)D,E,F(xiàn)使AD=BE=CF.
求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),點(diǎn)M,N分別在等邊三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.
(1)求證:∠BQM=60°;
(2)如圖(2),若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長(zhǎng)線上,其它條件不變,∠BQM=60°還成立嗎?(不需證明)
(3)如圖(3),若將題中的條件“點(diǎn)M,N分別在等邊三角形ABC的BC,CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,其它條件不變,∠BQM=60°還成立嗎?若成立,請(qǐng)說(shuō)明理由,若不成立,請(qǐng)寫出∠BQM的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案