【題目】為提升青少年的身體素質(zhì),深圳市在全市中小學(xué)推行“陽光體育”活動,某學(xué)校為滿足學(xué)生的需求,準(zhǔn)備再購買一些籃球和足球,已知用800元購買籃球的個數(shù)比購買足球的個數(shù)少2個,足球的單價為籃球單價的

(1)求籃球、足球的單價分別為多少元?

(2)如果計劃用不多于5200元購買籃球、足球共60個,那么至少要購買多少個足球?

【答案】(1)100元/個, 80元/個.(2)40個

【解析】(1)設(shè)籃球的單價為x元/個,則足球的單價為0.8x元/個,根據(jù)用800元購買籃球的個數(shù)比購買足球的個數(shù)少2個,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;

(2)購買m個足球,則購買(60﹣m)個籃球,根據(jù)總價=單價×購買數(shù)量結(jié)合總價錢不多于5200元,即可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍,取其內(nèi)的最小正整數(shù)即可.

解:(1)設(shè)籃球的單價為x元/個,則足球的單價為0.8x元/個,

根據(jù)題意得: +2=,

解得:x=100,

經(jīng)檢驗,x=100是原方程的解,

∴0.8x=80.

答:籃球的單價為100元/個,足球的單價為80元/個.

(2)設(shè)購買m個足球,則購買(60﹣m)個籃球,

根據(jù)題意得:80m+100(60﹣m)≤5200,

解得:m≥40.

答:至少要購買40個足球.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將 , , 通分的過程中,不正確的是( )
A.最簡公分母是(x-2)(x+3)2
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×4的正方形網(wǎng)格中,每個小正方形的頂點(diǎn)稱為格點(diǎn),左上角陰影部分是一個以格點(diǎn)為頂點(diǎn)的正方形(簡稱格點(diǎn)正方形).若再作一個格點(diǎn)正方形,并涂上陰影,使這兩個格點(diǎn)正方形無重疊面積,且組成的圖形既是軸對稱圖形,又是中心對稱圖形,則這個格點(diǎn)正方形的作法共有( )

A.2種
B.3種
C.4種
D.5種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫出平移后對應(yīng)的△A2B2C2.
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx﹣3經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于C點(diǎn).

(1)求拋物線的解析式;

(2)如圖①,拋物線的對稱軸上有一點(diǎn)P,且點(diǎn)P在x軸下方,線段PB繞點(diǎn)P順時針旋轉(zhuǎn)90°,點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在拋物線上,求點(diǎn)P的坐標(biāo).

(3)如圖②,直線y=x+交拋物線于A、E兩點(diǎn),點(diǎn)D為線段AE上一點(diǎn),連接BD,有一動點(diǎn)Q從B點(diǎn)出發(fā),沿線段BD以每秒1個單位的速度運(yùn)動到D,再沿DE以每秒2個單位的速度運(yùn)動到E,問:是否存在點(diǎn)D,使點(diǎn)Q從點(diǎn)B到E的運(yùn)動時間最少?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB中,OA=OB,C為AB中點(diǎn),以O(shè)為圓心,OC長為半徑作圓,AO與⊙O交于點(diǎn)E,直線OB與⊙O交于點(diǎn)F和D,連接EF、CF與OA交于點(diǎn)G.

(1)求證:直線AB是⊙O的切線;

(2)求證:ODEG=OGEF;

(3)若AB=8,BD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:25m2-10mn+n2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多項式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),則mn的值是(

A. 100 B. 0 C. ﹣100 D. 50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,E、F分別是AD及AD延長線上的點(diǎn),且DE=DF,連接BF、CE.則下列結(jié)論中正確的有( )
①△BDF≌△CDE;②CE=BF;③ABD和△ACD的面積相等;④BF∥CE.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案