解:(1)設(shè)以直線x=-3為對稱軸的拋物線的解析式為y=a(x+3)
2+k,
由已知得點C、D的坐標(biāo)分別為C(2,0)、D(0,-4),分別代入解析式中,
得
,
解得
,
∴y=
(x+3)
2-
為所求;
(2)(圖1)∴點C(2,0)關(guān)于直線x=-3的對稱點為
B(-8,0),
∴使PC+PD值最小的P點是BD與直線x=-3的交點.
∴PC+PD的最小值即線段BD的長.
在Rt△BOD中,由勾股定理得BD=4
,
∴PC+PD的最小值是4
∵點P是對稱軸上的動點,
∴PC+PD無最大值.
∴PC+PD的取值范圍是PC+PD≥4
.
(3)存在.
①(圖2)當(dāng)BC為所求平行四邊形的一邊時.
點F在拋物線上,且使四邊形BCFE或四邊形BCEF為平行四邊形,則有BC∥EF且BC=EF,
設(shè)點E(-3,t),過點E作直線EF∥BC與拋物線交于點F(m,t).
由BC=EF,得EF=1O.
∴F
1(7,t),F(xiàn)
2(-13,t).
又當(dāng)m=7時,t=
∴F
1(7,
),F(xiàn)
2(-13,
);
②(圖3)當(dāng)BC為所求平行四邊形的對角線時.
由平行四邊形的性質(zhì)可知,點F即為拋物線的頂點(-3,
)
∴存在三個符合條件得F點,分別為F
1(7,
),F(xiàn)
2(-13,
),F(xiàn)
3(-3,
).
分析:(1)根據(jù)圓的對稱性,圓心的坐標(biāo)和圓的半徑可得出B點的坐標(biāo)為(-8,0),C點的坐標(biāo)為(2,0),M點的坐標(biāo)為(0,4),D點的坐標(biāo)為(0,-4).已知拋物線過C,D兩點,且對稱軸為x=-3,可用頂點式二次函數(shù)通式來設(shè)出拋物線的解析式,然后將C、D兩點的坐標(biāo)代入拋物線中即可得出過C、D兩點的二次函數(shù)的解析式.
(2)由于P是動點,因此PC+PD的最大值可以視作為無窮大;那么求PC+PD最小值時,關(guān)鍵是找出P點的位置,由于B、C關(guān)于拋物線的對稱軸對稱,因此連接BC,直線BC與拋物線對稱軸的交點就是PC+PD最小時P點的位置.那么此時PC+PD=BD,可在直角三角形BOD中用勾股定理求出BD的長,即可得出PC+PD的取值范圍.
(3)本題要分兩種情況進行討論:
①當(dāng)平行四邊形以BC為邊時,可在x軸上方找出兩個符合條件的點,由于EF平行且相等于BC,那么可根據(jù)BC的長和拋物線的對稱軸得出此時F點的橫坐標(biāo),然后代入拋物線的解析式中即可求出F點的坐標(biāo).
②平行四邊形以BC為對角線,可在x軸下方找出一個符合條件的點且此時F點正好是拋物線的頂點.
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、平行四邊形的判定和性質(zhì)等重要知識點,綜合性強,考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.