【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感.他驚喜的發(fā)現(xiàn):當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明.下面是小聰利用圖1證明勾股定理的過程:
(1)將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°.求證:a2+b2=c2.
(2)請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.
求證:a2+b2=c2.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和,化簡整理即可得到勾股定理表達式.具體:(1) 連接DB,過點D作BC邊上的高DF,則DF=EC=b-a,表示出S四邊形ADCB, 兩者相等,整理即可得證; (2)證法(一) 首先連結(jié)BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證; 證法二:連接BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.
(1)證明:連接DB,過點D作BC邊上的高DF,則DF=EC=b-a.
∵S四邊形ADCB=S△ACD+S△ABC=b2+ab,
又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b-a),
∴b2+ab=c2+a(b-a).
∴a2+b2=c2.
(2)證法一:連接BD,過點B作DE邊上的高BF,則BF=b-a.
∵S五邊形ACBED=S△ACB+S△ABE+S△AED=ab+b2+ab,
又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b-a),
∴ab+b2+ab=ab+c2+a(b-a),
∴a2+b2=c2.
證法二:連接BD,過點B作DE邊上的高BF,則BF=b-a,
∵S五邊形ACBED=S梯形ACBE+S△AED=b(a+b)+ab,
又∵S五邊形ACBED=S△ACB+S△ABD+S△BED=ab+c2+a(b-a),
∴b(a+b)+ab=ab+c2+a(b-a),
∴a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求直線AB和OB的解析式.
(2)求拋物線的解析式.
(3)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.問△BOD的面積是否存在最大值?若存在,求出這個最大值并寫出此時點D的坐標;若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖A在數(shù)軸上所對應的數(shù)為﹣2.
(1)點B在點A右邊距A點4個單位長度,求點B所對應的數(shù);
(2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點 B 以每秒2個單位長度沿數(shù)軸向右運動,當點A運動到﹣6所在的點處時,求A,B兩點間距離.
(3)在(2)的條件下,現(xiàn)A點靜止不動,B點再以每秒2個單位長度沿數(shù)軸向左運動時,經(jīng)過多長時間A,B兩點相距4個單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高速公路的同一側(cè)有A、B兩城鎮(zhèn),如圖,它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之間建一個出口P,使A、B兩城鎮(zhèn)到P的距離之和最小.求這個最短距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,點O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D,E,F(xiàn)是垂足,且AB=5,BC=4,AC=3,則點O到三邊AB,AC,BC的距離分別是( )
A. 1,1,1 B. 2,2,2 C. 1,1.5,2 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初二年級教師對試卷講評課中學生參與情況進行調(diào)查,調(diào)查項目分為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.調(diào)查組隨機抽取了若干名初中學生的參與情況,繪制了如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為______度;
(2)請將頻數(shù)分布直方圖補充完整;
(3)如果全市有6000名初三學生,那么在試卷評講課中,“獨立思考”的初二學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)試說明 : ∠ABC=∠BFD ;
(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標原點,CD垂直于x軸,D(5,4),AD=2.若動點E、F同時從點O出發(fā),E點沿折線OA→AD→DC運動,到達C點時停止;F點沿OC運動,到達C點時停止,它們運動的速度都是每秒1個單位長度.設E運動x秒時,△EOF的面積為y(平方單位),則y關于x的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com