作業(yè)寶

如圖,AB=AC,F(xiàn)D⊥BC于D,DE⊥AB于E,若∠AFD=145°,求∠EDF的度數(shù).

解:∵AB=AC,
∴∠B=∠C,
∵FD⊥BC于D,DE⊥AB于E,
∴∠BED=∠FDC=90°,
∵∠AFD=145°,
∴∠EDB=∠CFD=180°-145°=35°,
∴∠EDF=90°-∠EDB=90°-35°=55°.
故∠EDF的度數(shù)是55°.
分析:先根據(jù)等腰三角形等邊對等角的性質(zhì)得到∠B=∠C,利用等角的余角相等和已知角可求出∠EDB的數(shù),從而可求得∠EDF的度數(shù).
點評:本題綜合考查等腰三角形,三角形外角性質(zhì)等知識.一般是利用等腰三角形的性質(zhì)得出有關(guān)角的度數(shù),進(jìn)而求出所求角的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)如果∠C=2∠D,那么你能得到什么結(jié)論?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)已知:如圖,AB=AC,∠DAE=∠B.
求證:△ABE∽△DCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•來賓)如圖,AB=AC,D,E分別是AB,AC上的點,下列條件中不能證明△ABE≌△ACD的是
( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AC,∠C=67°,AB的垂直平分線EF交AC于點D,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AC=10,∠A=40°,AB的垂直平分線MN交AC于點D,求:
(1)∠ABD的度數(shù);
(2)若△BCD的周長是m,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案