已知△ABC中,∠ABC=90゜,AB=BC,點(diǎn)A、B分別是x軸和y軸上的一動(dòng)點(diǎn).
(1)如圖1,若點(diǎn)C的橫坐標(biāo)為4,求點(diǎn)B的坐標(biāo);

(2)如圖2,BC交x軸于D,AD平分∠BAC,若點(diǎn)C的縱坐標(biāo)為3,A(5,0),求點(diǎn)D的坐標(biāo).

(3)如圖3,分別以O(shè)B、AB為直角邊在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y軸于M,求 SBEM:SABO

(1)如圖1,作CM⊥y軸于M,則CM=4,
∵∠ABC=∠AOB=90゜,∴∠CBM+∠ABO=90°,∠ABO+∠OAB=90°,

∴∠CBM=∠BAO,
在△BCM和△ABO中∴△BCM≌△ABO(AAS),

∴OB=CM=4,∴B(0,-4).(2分)
(2)如圖2,作CM⊥x軸于M,交AB的延長(zhǎng)線于N,
則∠AMC=∠AMN=90°,∵點(diǎn)C的縱坐標(biāo)為3,∴CM=3,
∵AD平分∠CAB,∴∠CAM=∠NAM,∴在△CAM和△NAM中

∴△AMC≌△AMN(ASA),∴CM=MN=3,∴CN=6,
∵CM⊥AD,∠CBA=90°,∴∠CBN=∠CMD=∠ABD=90°,
∵∠CDM=∠BDA,∠CMD+∠CDM+∠NCB=180°,∠BDA+∠BAD+∠DBA=180°,
∴∠NCB=∠BAD,在△CBN和△ABD中∴△CBN≌△ABD(ASA),
∴AD=CN=2CM=6,∵A(5,0),∴D(-1,0).(4分)
(3)如圖3,作EN⊥y軸于N,
∵∠ENB=∠BOA=∠ABE=90°,
∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,
∴∠NBE=∠BAO,
在△ABO和△BEN中
∴△ABO≌△BEN(AAS),
∴△ABO的面積=△BEN的面積,OB=NE=BF,
∵∠OBF=∠FBM=∠BNE=90°,
∴在△BFM和△NEM中
∴△BFM≌△NEM(AAS),
∴BM=NM,
∵△BME邊BM上的高和△NME的邊MN上的高相等,
∴SBEN=SBEM=SBEN=SABO
即SBEM:SABO=1:2.(5分)

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動(dòng)點(diǎn),且點(diǎn)P不與點(diǎn)A、B重合,點(diǎn)Q不與點(diǎn)B、C重合.
(1)在以下五個(gè)結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點(diǎn)的三角形全等于△PQB;④以A、P、C為頂點(diǎn)的三角形全等于△CPQ;⑤以A、P、C為頂點(diǎn)的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號(hào)填入題中的模線上).
(2)設(shè)AC=BC=1,當(dāng)CQ的長(zhǎng)取不同的值時(shí),△CPQ是否可能為直角三角形?若可能,請(qǐng)說(shuō)明所有的精英家教網(wǎng)情況;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過(guò)D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長(zhǎng)為一元二次方程x2-9x+20=0的一個(gè)根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案