【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,。
(1)請(qǐng)畫(huà)出關(guān)于軸對(duì)稱(chēng)后得到的;
(2)直接寫(xiě)出點(diǎn),點(diǎn),點(diǎn)的坐標(biāo);
(3)在軸上尋找一個(gè)點(diǎn),使的周長(zhǎng)最小,并直接寫(xiě)出的周長(zhǎng)的最小值。
【答案】(1)見(jiàn)解析;(2),,;(3),
【解析】
(1)畫(huà)出點(diǎn)A,B,C關(guān)于y軸的對(duì)稱(chēng)點(diǎn),連接起來(lái),即可;
(2)根據(jù)點(diǎn),點(diǎn),點(diǎn)在平面直角坐標(biāo)系中的位置,即可得到答案;
(3)作點(diǎn)B關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B’,連接AB’交x軸于點(diǎn)P,即可,進(jìn)而求出的周長(zhǎng)的最小值.
(1)如圖所示:
(2)由第(1)小題可得:,,;
(3)作點(diǎn)B關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B’,連接AB’交x軸于點(diǎn)P,即為所求的點(diǎn),如圖
∵,B’(4,-2),
∴AB’所在直線(xiàn)的一次函數(shù)解析式為:y=-x+2,
令y=0,則,0=-x+2,解得:x=2,
∴點(diǎn)P的坐標(biāo)是,
此時(shí),的周長(zhǎng)最小,周長(zhǎng)的最小值是AB’+AB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿(mǎn)足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤(pán),都被分成了3等份,并在每份內(nèi)均標(biāo)有數(shù)字,如圖所示.規(guī)則如下:
①分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán);
②兩個(gè)轉(zhuǎn)盤(pán)停止后,將兩個(gè)指針?biāo)阜輧?nèi)的數(shù)字相乘(若指針停止在等份線(xiàn)上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).
【1】用列表法或樹(shù)狀圖分別求出數(shù)字之積為3的倍數(shù)和數(shù)字之積為5的倍數(shù)的概率;
【2】小明和小亮想用這兩個(gè)轉(zhuǎn)盤(pán)做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時(shí),小明得2分;數(shù)字之積為5的倍數(shù)時(shí),小亮得3分.這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明理由;認(rèn)為不公平的,試修改得分規(guī)定,使游戲?qū)﹄p方公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于X,Y定義一種新運(yùn)算F,F(X,Y)=aX+2bY﹣1(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算;例如:F(2,1)=2a+2b﹣1;
(1)F(1,1)=3,F(2,﹣1)=1;
①求a和b的值;
②若關(guān)于m的不等式組只有三個(gè)整數(shù)解,求實(shí)數(shù)k的取值范圍;
(2)若F(X,Y)=F(Y,X)對(duì)于任意實(shí)數(shù)X,Y都成立(這里F(X,Y)和F(Y,X)均有意義),求a與b滿(mǎn)足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.
(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠BAD=60°.動(dòng)點(diǎn)E、F分別從點(diǎn)B、D同時(shí)出發(fā),以1cm/s的速度向點(diǎn)A、C運(yùn)動(dòng),連接AF、CE,取AF、CE的中點(diǎn)G、H,連接GE、FH.設(shè)運(yùn)動(dòng)的時(shí)間為ts(0<t<4).
(1)求證:AF∥CE;
(2)當(dāng)t為何值時(shí),四邊形EHFG為菱形;
(3)試探究:是否存在某個(gè)時(shí)刻t,使四邊形EHFG為矩形,若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABE,△BCD均為等邊三角形,點(diǎn)A,B,C在同一條直線(xiàn)上,連接AD,EC,AD與EB相交于點(diǎn)M,BD與EC相交于點(diǎn)N,下列說(shuō)法正確的有:___________
①AD=EC;②BM=BN;③MN∥AC;④EM=MB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)與軸、軸分別交于點(diǎn)、,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)是第二象限內(nèi)直線(xiàn)上的一個(gè)動(dòng)點(diǎn).
(1)求的值,并在坐標(biāo)系中直接作出該直線(xiàn)圖象;
(2)若點(diǎn)是第二象限內(nèi)直線(xiàn)上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)過(guò)程中,試寫(xiě)出的面積與的函數(shù)關(guān)系式,并根據(jù)已知條件寫(xiě)出自變量的取值范圍;
(3)探究:當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),的面積為3?求出此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com