【題目】如圖,AB是⊙O的直徑,點C在⊙O上,CE⊥AB于E,BD交CE于點F,CF=BF.
(1)求證:C是的中點;
(2)若CD=4,AC=8,則⊙O的半徑為 .
【答案】(1)見解析;(2)2.
【解析】
(1)由AB是直徑知∠CAB+∠CBE=90°,由CE⊥AB知∠ECB+∠CBE=90°,據(jù)此得∠CAB=∠ECB,由CF=BF知∠FCB=∠FBC,從而得∠CDB=∠FBC,即可得證;
(2)利用(1)中所得結論得出BC=CD=4,再根據(jù)勾股定理可求得AB的長,即可得出答案.
解:(1)∵AB是直徑,
∴∠ACB=90°,
∴∠CAB+∠CBE=90°,
∵CE⊥AB,
∴∠ECB+∠CBE=90°,
∴∠CAB=∠ECB,
∵∠CAB=∠CDB,
∴∠CDB=∠ECB,
又∵CF=BF,
∴∠FCB=∠FBC,
∴∠CDB=∠FBC,
∴圓弧CD =圓弧BC,
∴C是圓弧BD的中點;
(2)由(1)知C是圓弧BD的中點,
∴BC=CD=4,
∵∠ACB=90°,
∴AB= = =4 ,
∴⊙O的半徑為2,
故答案為:(1)見解析;(2)2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認為這個游戲規(guī)則對雙方公平嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線l:y=x﹣與x軸交于點B1,以OB1為邊長作等邊△A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊△A2A1B2,過點A2作A1B2平行于x軸,交直線l于點B3,以A2B3為邊長作等邊△A3A2B3,…,則等邊△A2017A2018B2018的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點,與y軸交于點C,頂點為D,連接BC
(1)點G是直線BC上方拋物線上一動點(不與B、C重合),過點G作y軸的平行線交直線BC于點E,作GF⊥BC于點F,點M、N是線段BC上兩個動點,且MN=EF,連接DM、GN.當△GEF的周長最大時,求DM+MN+NG的最小值;
(2)如圖2,連接BD,點P是線段BD的中點,點Q是線段BC上一動點,連接DQ,將△DPQ沿PQ翻折,且線段D′P的中點恰好落在線段BQ上,將△AOC繞點O逆時針旋轉(zhuǎn)60°得到△A′OC′,點T為坐標平面內(nèi)一點,當以點Q、A′、C′、T為頂點的四邊形是平行四邊形時,求點T的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則在“①,②,③,④”中正確的判斷是( )
A. ①②③④ B. ④ C. ①②③ D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園文化藝術節(jié)中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?
(2)某同學測試成績?yōu)?/span>70分,他的綜合評價得分有可能達到A等嗎?為什么?
(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com