精英家教網 > 初中數學 > 題目詳情

【題目】某商品的進價為每件20元,售價為每件25元時,每天可賣出250件.市場調查反映:如果調整價格,一件商品每漲價1元,每天要少賣出10件.

(1)求出每天所得的銷售利潤w(元)與每件漲價x(元)之間的函數關系式;

(2)銷售單價為多少元時,該商品每天的銷售利潤最大?

【答案】(1)w=-10(x-10)2+2250(0≤x≤25)(2)銷售單價為35元時,該商品每天的銷售利潤最大

【解析】

(1)利用銷量×每件利潤=總利潤,進而求出即可;

(2)利用二次函數的性質得出銷售單價.

(1)根據題意得:w =(25+x-20)(250-10x)

即:w =-10x2+200x+1250w=-10(x-10)2+2250(0≤x≤25)

(2)-10<0,∴拋物線開口向下,二次函數有最大值,

時,銷售利潤最大

此時銷售單價為:10+25=35(元)

答:銷售單價為35元時,該商品每天的銷售利潤最大.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知x1,x2是關于x的一元二次方程4kx2﹣4kx+k+1=0的兩個實數根.

(1)是否存在實數k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;

(2)求使﹣2的值為整數的實數k的整數值;

(3)若k=﹣2,λ=,試求λ的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有長為27m的籬笆,一面利用墻(墻的最大可用長度 a12m),圍成中間隔有一道籬笆的矩形花圃,設花圃的寬為AB=xm,面積為Sm2

(1) S x 的函數關系式;

(2)求矩形花圃的最大面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,AC=8cm,BC=6cm,P點在BC上,從B點到C點運動不包括 C,點 P運動的速度為1cm/s;Q點在AC上從C點運動到A不包括A,速度為2cm/s,若點 P、Q 分別從B、C 同時運動,且運動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.

(1) t 為何值時,P、Q 兩點的距離為 4cm?

(2)請用配方法說明,點P運動多少時間時,四邊形BPQA的面積最?最小面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3E、F分別是ABBC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正比例函數和反比例函數的圖象都經過點 A3,3).

1)求正比例函數和反比例函數的解析式;

2)把直線 OA 向下平移后得到直線 l,與反比例函數的圖象交于點 B6m),求 m 的值和直線 l 的解 析式;

3)在(2)中的直線 lx 軸、y 軸分別交于 C、D,求四邊形 OABC 的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】手機下載一個APP,繳納一定數額的押金,就能以每小時0.51元的價格解鎖一輛自行車任意騎行最近的網紅非共享單車莫屬.共享單車為解決市民出行的最后一公里難題幫了大忙,人們在享受科技進步、共享經濟帶來的便利的同時,隨意停放、加裝私鎖、大卸八塊等毀壞單車的行為也層出不窮.某共享單車公司一月投入部分自行車進入市場,一月底發(fā)現損壞率不低于10%,二月初又投入1200輛進入市場,使可使用的自行車達到7500輛.

(1)一月份該公司投入市場的自行車至少有多少輛?

(2)二月份的損壞率達到20%,進入三月份,該公司新投入市場的自行車比二月份增長4a%,由于媒體的關注,毀壞共享單車的行為引起了一場國民素質的大討論,三月份的損壞率下降a%,三月底可使用的自行車達到7752輛,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,EDF=60°,當CE=AF時,如圖1小芳同學得出的結論是DE=DF

(1)繼續(xù)旋轉三角形紙片,當CE≠AF時,如圖2小芳的結論是否成立?若成立,加以證明;若不成立,請說明理由;

(2)再次旋轉三角形紙片,當點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數量關系;

(3)連EF,若DEF的面積為y,CE=x,求y與x的關系式,并指出當x為何值時,y有最小值,最小值是多少?

查看答案和解析>>

同步練習冊答案