【題目】如圖,在RtABC中,AC=8cm,BC=6cm,P點(diǎn)在BC上,從B點(diǎn)到C點(diǎn)運(yùn)動(dòng)不包括 C點(diǎn),點(diǎn) P運(yùn)動(dòng)的速度為1cm/s;Q點(diǎn)在AC上從C點(diǎn)運(yùn)動(dòng)到A點(diǎn)不包括A點(diǎn),速度為2cm/s,若點(diǎn) P、Q 分別從B、C 同時(shí)運(yùn)動(dòng),且運(yùn)動(dòng)時(shí)間記為t秒,請(qǐng)解答下面的問(wèn)題,并寫(xiě)出探索的主要過(guò)程.

(1)當(dāng) t 為何值時(shí),P、Q 兩點(diǎn)的距離為 4cm?

(2)請(qǐng)用配方法說(shuō)明,點(diǎn)P運(yùn)動(dòng)多少時(shí)間時(shí),四邊形BPQA的面積最。孔钚∶娣e是多少?

【答案】(1) 2;(2) 3,15cm2

【解析】

(1)根據(jù)勾股定理PC2+CQ2=PQ2,便可求出經(jīng)過(guò)2s后,P、Q兩點(diǎn)的距離為4cm;(2)根據(jù)三角形的面積公式SPCQ=×PC×CQ以及二次函數(shù)最值便可求出t=1.75s時(shí)△PCQ的面積最大,進(jìn)而求出四邊形BPQA的面積最小值.

:(1)∵在Rt△ABC中,AC=8cm,BC=6cm,
∴AB=10cm,
設(shè)經(jīng)過(guò)ts后,P、Q兩點(diǎn)的距離為4cm,
ts后,PC=6-t cm,CQ=2t cm,
根據(jù)勾股定理可知PC2+CQ2=PQ2
代入數(shù)據(jù)(6-t)2+(2t)2=(42;
解得t=2t=,
t2時(shí),P、Q兩點(diǎn)的距離為4cm;

(2)設(shè)經(jīng)過(guò)ts后,△PCQ的面積最大,則此時(shí)四邊形BPQA的面積最小,
ts后,PC=6-tcm,CQ=2t cm,
SPCQ=×PC×CQ=×(6-t)×2t=-t2+6t
當(dāng)t=-時(shí),即t=3s時(shí),△PCQ的面積最大,
SPCQ=

×PC×CQ=×(6-3)×6=9(cm2),
∴四邊形BPQA的面積最小值為:SABC-SPCQ最大=×6×8-9=15(cm2),
當(dāng)點(diǎn)P運(yùn)動(dòng)3秒時(shí),四邊形BPQA的面積最小為:15cm2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:如圖1,在ABC中,BE是AC邊上的中線, DBC邊上的一點(diǎn),CD:BD=1:2,AD與BE相交于點(diǎn)P,求的值小昊發(fā)現(xiàn),過(guò)點(diǎn)A作AFBC,交BE的延長(zhǎng)線于點(diǎn)F,通過(guò)構(gòu)造AEF,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決如圖2).

1的值為 ;

2參考小昊思考問(wèn)題的方法,解決問(wèn)題:

如圖3,在ABC中,ACB=90°,點(diǎn)D在BC的延長(zhǎng)線上,AD與AC邊上的中線BE的延長(zhǎng)線交于點(diǎn)P,DC:BC:AC=1:2:3

的值;

若CD=2,求BP的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在中,,AD平分,點(diǎn)MAC的中點(diǎn),在AD上取點(diǎn)E,使得,EMDC的延長(zhǎng)線交于點(diǎn)F.

當(dāng)時(shí),AE的長(zhǎng);的大。

當(dāng)時(shí),探究的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點(diǎn)G.

(1)求證:AE=CF;

(2)若∠ABE=55°,求∠EGC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,(M2,N2),BAC=30°,EAB邊的中點(diǎn),以BE為邊作等邊BDE,連接AD,CD.

(1)求證:ADE≌△CDB;

(2)若BC=,在AC邊上找一點(diǎn)H,使得BH+EH最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,邊長(zhǎng)為1的正ABC(C與O重合)的邊BC在x軸上,頂點(diǎn)A在第一象限,現(xiàn)在進(jìn)行以下操作:

(1)將ABC沿x軸向右平移一個(gè)單位長(zhǎng)度,此時(shí)A變?yōu)锳1;

(2)將三角形沿x軸翻折,此時(shí)A1變?yōu)锳2;

(3)將三角形繞點(diǎn)O旋轉(zhuǎn)180°,此時(shí)A2變?yōu)锳3;

(4)將三角形沿y軸翻折,此時(shí)A3變?yōu)锳4;

(5)將三角形繞點(diǎn)O旋轉(zhuǎn)180°,此時(shí)A4變?yōu)锳5;

按照此規(guī)律,重復(fù)以上五步,則A2018的坐標(biāo)為( 。

A. ,﹣ B. (﹣, C. D. (﹣,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的平分線,且,若,則的大小為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,“豐收1號(hào)”小麥的試驗(yàn)田是邊長(zhǎng)為的正方形去掉一個(gè)邊長(zhǎng)為2米的正方形蓄水池后余下的部分,“豐收2號(hào)”小麥的試驗(yàn)田是邊長(zhǎng)為米的正方形,兩塊試驗(yàn)田的小麥都收獲了

1)哪種小麥的單位面積產(chǎn)量高?

2)高的單位面積產(chǎn)量是低的單位面積產(chǎn)量的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校科技實(shí)踐社團(tuán)制作實(shí)踐設(shè)備,小明的操作過(guò)程如下:

①小明取出老師提供的圓形細(xì)鐵環(huán),先通過(guò)在圓一章中學(xué)到的知識(shí)找到圓心O,再任意找出圓O的一條直徑標(biāo)記為AB(如圖1),測(cè)量出AB=4分米;

②將圓環(huán)進(jìn)行翻折使點(diǎn)B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點(diǎn)分別標(biāo)記為C、D(如圖2);

③用一細(xì)橡膠棒連接CD兩點(diǎn)(如圖3);

④計(jì)算出橡膠棒CD的長(zhǎng)度.

小明計(jì)算橡膠棒CD的長(zhǎng)度為( )

A. 2分米 B. 2分米 C. 3分米 D. 3分米

查看答案和解析>>

同步練習(xí)冊(cè)答案