如圖等腰△ABC的底邊長(zhǎng)為8cm,腰長(zhǎng)為5cm,一個(gè)動(dòng)點(diǎn)P在底邊上從B向C以O(shè).25cm/s的速度移動(dòng),請(qǐng)你探究,當(dāng)P運(yùn)動(dòng)幾秒時(shí),P點(diǎn)與頂點(diǎn)A的連線(xiàn)PA與腰垂直.

解:如圖,作AD⊥BC,交BC于點(diǎn)D,
∵BC=8cm,
∴BD=CD=BC=4cm,
∴AD=3,
分兩種情況:當(dāng)點(diǎn)P運(yùn)動(dòng)t秒后有PA⊥AC時(shí),
∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2
∴PD2+32=(PD+4)2-52∴PD=2.25,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
當(dāng)點(diǎn)P運(yùn)動(dòng)t秒后有PA⊥AB時(shí),同理可證得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴點(diǎn)P運(yùn)動(dòng)的時(shí)間為7秒或25秒.
分析:根據(jù)等腰三角形三線(xiàn)合一性質(zhì)可得到BD的長(zhǎng),由勾股定理可求得AD的長(zhǎng),再分兩種情況進(jìn)行分析:①PA⊥AC②PA⊥AB,從而可得到運(yùn)動(dòng)的時(shí)間.
點(diǎn)評(píng):此題考查了等腰三角形的性質(zhì)和勾股定理的運(yùn)用,此題難度適中,解題的關(guān)鍵是分類(lèi)討論思想、方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題:
如圖等腰△ABC的底邊長(zhǎng)為8cm,腰長(zhǎng)為5cm,一個(gè)動(dòng)點(diǎn)P在底邊上從B向C以O(shè).25cm/s的速度移動(dòng),請(qǐng)你探究,當(dāng)P運(yùn)動(dòng)幾秒時(shí),P點(diǎn)與頂點(diǎn)A的連線(xiàn)PA與腰垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知等腰△ABC中,AB=AC=13,BC=10
(1)如圖①,△ABC的面積=
60
60
,腰AC上的高BD=
120
13
120
13
;
(2)如圖②,P是底邊BC上任意一點(diǎn),PE⊥AB于E,PF⊥AC于F,連接AP,不難發(fā)現(xiàn):△ABP的面積+△ACP的面積=△ABC的面積,據(jù)此式,你能求出PE+PF等于多少嗎?你有什么發(fā)現(xiàn)?
(3)如圖③四邊形BCGH是形狀、大小一定的等腰梯形,點(diǎn)P是下底BC上一動(dòng)點(diǎn),試問(wèn):點(diǎn)P到兩腰的距離之和是否為一定值?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖AB兩側(cè)是兩個(gè)等腰三角形,其中等腰△ABC的底AB是等腰△ABD的腰,
(1)若∠CAD=120°,∠CBD=150°,求∠C,∠D;
(2)若∠CAD=90°,AC=AD,依題意畫(huà)出符合條件的圖形,并求∠C,∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,如圖AB兩側(cè)是兩個(gè)等腰三角形,其中等腰△ABC的底AB是等腰△ABD的腰,
(1)若∠CAD=120°,∠CBD=150°,求∠C,∠D;
(2)若∠CAD=90°,AC=AD,依題意畫(huà)出符合條件的圖形,并求∠C,∠D.

查看答案和解析>>

同步練習(xí)冊(cè)答案