拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點.
(1)求出m的值并畫出這條拋物線;
(2)求它與x軸的交點和拋物線頂點的坐標;
(3)x取什么值時,拋物線在x軸上方?
(4)x取什么值時,y的值隨x值的增大而減小?

【答案】分析:(1)直接把點(0,3)代入拋物線解析式求m,確定拋物線解析式,根據(jù)解析式確定拋物線的頂點坐標,對稱軸,開口方向,與x軸及y軸的交點,畫出圖象.
(2)、(3)、(4)可以通過(1)的圖象及計算得到.
解答:解:(1)由拋物線y=-x2+(m-1)x+m與y軸交于(0,3)得:m=3.
∴拋物線為y=-x2+2x+3=-(x-1)2+4.
列表得:
X-1123
y343
圖象如右.

(2)由-x2+2x+3=0,得:x1=-1,x2=3.
∴拋物線與x軸的交點為(-1,0),(3,0).
∵y=-x2+2x+3=-(x-1)2+4
∴拋物線頂點坐標為(1,4).

(3)由圖象可知:
當-1<x<3時,拋物線在x軸上方.

(4)由圖象可知:
當x>1時,y的值隨x值的增大而減。
點評:考查從圖象中讀取信息的能力.考查二次函數(shù)的性質及圖象畫法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經(jīng)過B、C兩點,點精英家教網(wǎng)A是拋物線與x軸的另一個交點.
(1)求拋物線的函數(shù)表達式;
(2)若點P在線段BC上,且S△PAC=
12
S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點的橫坐標,且x12+x22=10.
求:(1)x1、x2的值;
(2)拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知一元二次方程-x2+bx+c=0的兩個實數(shù)根是m,4,其中0<m<4.
(1)求b、c的值(用含m的代數(shù)式表示);
(2)設拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.若點D的坐標為(0,-2),且AD•BD=10,求拋物線的解析式及點C的坐標;
(3)在(2)中所得的拋物線上是否存在一點P,使得PC=PD?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知拋物線y=x2+bx+c的部分圖象如圖所示,若方程x2+bx+c=0有兩個同號的實數(shù)根,則c的值可以是
2
.(寫出一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉180°,所得拋物線的解析式是( 。

查看答案和解析>>

同步練習冊答案