【題目】為配合我市“創(chuàng)建全國(guó)文明城市”某單位計(jì)劃在一塊矩形空地上修建綠色植物園(如圖所示),其中邊靠墻(墻長(zhǎng)為米),另外三邊用總長(zhǎng)36米的材料圍成.若米,矩形的面積為平方米.

1)求的函數(shù)關(guān)系式;

2)若矩形面積為160平方米,求的長(zhǎng).

3)在(2)的前提下,墻長(zhǎng)米對(duì)的長(zhǎng)有影響嗎?請(qǐng)?jiān)敿?xì)說(shuō)明.

【答案】1;(2的長(zhǎng)為16;(3)有影響①若米時(shí),(2)題無(wú)解,②若時(shí),(2)題一解,即米,③若米時(shí),(2)題兩解,即米或20米.

【解析】

1)根據(jù)題意列出表達(dá)式即可;

2)令(1)中y=160,解出對(duì)應(yīng)x值即可;

3)根據(jù)(2)中結(jié)果分三種情況說(shuō)明即可.

解:(1)由題意,列

;

2)由(1)知:,即,

解得,

AB的長(zhǎng)為16米或20米;

3)有影響,根據(jù)(2)中結(jié)果,

①若米時(shí),(2)題無(wú)解;

②若時(shí),(2)題一解,即米;

③若米時(shí),(2)題兩解,即米或20.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠色出行是對(duì)環(huán)境影響最小的出行方式,“共享單車(chē)”已成為北京的一道靚麗的風(fēng)景線.某社會(huì)實(shí)踐活動(dòng)小

組為了了解“共享單車(chē)”的使用情況,對(duì)本校教師在36日至310日使用單車(chē)的情況進(jìn)行了問(wèn)卷調(diào)查,

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分:

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

137日使用“共享單車(chē)”的教師人數(shù)為人,并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)不同品牌的“共享單車(chē)”各具特色,社會(huì)實(shí)踐活動(dòng)小組針對(duì)有過(guò)使用“共享單車(chē)”經(jīng)歷的教師做了進(jìn)一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車(chē)”,統(tǒng)計(jì)結(jié)果如圖,其中喜歡的教師有36人,求喜歡的教師的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究.

如圖1,拋物線yx2x2x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線交y軸于點(diǎn)E0,2).

1)求AB,C三點(diǎn)的坐標(biāo)及直線BE的解析式.

2)如圖2,過(guò)點(diǎn)ABE的平行線交拋物線于點(diǎn)D,點(diǎn)P是拋物線上位于線段AD下方的一個(gè)動(dòng)點(diǎn),連接PA,PD,求OAPD面積的最大值.

3)若(2)中的點(diǎn)P為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)Q,使得以AD,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC 內(nèi)接于⊙O,過(guò)點(diǎn) A 作⊙O 的切線交 CB 的延長(zhǎng)線于點(diǎn) P,且∠PAB=45°

1)如圖 1,求∠ACB 的度數(shù);

2)如圖 2,AD 是⊙O 的直徑,AD BC 于點(diǎn) E,連接 CD,求證:AC CD ;

3)如圖 3 ,在(2)的條件下,當(dāng) BC 4CD 時(shí),點(diǎn) F,G 分別在 AP,AB 上,連接 BF,FG,∠BFG=P,且 BF=FG,若 AE=15,求 FG 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動(dòng)信號(hào)發(fā)射塔,

筆山職中數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測(cè)得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測(cè)得該塔的塔頂的仰角為.求:

坡頂到地面的距離;

移動(dòng)信號(hào)發(fā)射塔的高度(結(jié)果精確到米).

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O 的半徑為 3AB 為圓上一動(dòng)弦,以 AB 為邊作正方形 ABCD,求 OD 的最大值__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿路徑以的速度運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為,的面積為,則關(guān)于的函數(shù)圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶(hù)今年1月初以20000/畝的價(jià)格承包了10畝地用來(lái)種植某農(nóng)作物,已知若按傳統(tǒng)種植,每月每畝能產(chǎn)出3000千克,每畝的種植費(fèi)用為2500元;若按科學(xué)種植,每月每畝產(chǎn)量可增加,但種植費(fèi)用會(huì)增加2000/畝,且前期需要再投入25萬(wàn)元,花費(fèi)4個(gè)月的時(shí)間進(jìn)行生長(zhǎng)環(huán)境的改善,改善期間無(wú)法種植.已知每千克農(nóng)作物市場(chǎng)售價(jià)為3元,每月底一次性全部出售,假設(shè)前個(gè)月銷(xiāo)售總額為(萬(wàn)元).

1)當(dāng)時(shí),分別求出兩種種植方法下的銷(xiāo)售總額;

2)問(wèn):若該農(nóng)戶(hù)選擇科學(xué)種植,幾個(gè)月后能夠收回成本?

3)在(2)的條件下,假如從20191月初算起,那么至少要到何時(shí),該農(nóng)戶(hù)獲得的總利潤(rùn)能夠超過(guò)傳統(tǒng)種植同樣時(shí)間內(nèi)所獲得的總利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀,再解答問(wèn)題.

恒等變形,是代數(shù)式求值的一個(gè)很重要的方法,利用恒等變形,可以把無(wú)理數(shù)運(yùn)算轉(zhuǎn)化為有理數(shù)運(yùn)算,可以把次數(shù)較高的代數(shù)式轉(zhuǎn)化為次數(shù)較低的代數(shù)式.如當(dāng)x時(shí),求x2x+2的值,為解答這題,若直接把x代入所求的式中,進(jìn)行計(jì)算,顯然很麻煩.我們可以通過(guò)恒等變形,對(duì)本題進(jìn)行解答.

方法一 將條件變形.因x,得x1.再把所求的代數(shù)式變形為關(guān)于(x1)的表達(dá)式.

原式=x32x22x+2

[x2x1)﹣xx1)﹣3x]+2

[xx123x]+2

3x3x+2

2

方法二 先將條件化成整式,再把等式兩邊同時(shí)平方,把無(wú)理數(shù)運(yùn)算轉(zhuǎn)化為有理數(shù)運(yùn)算.由x1,可得x22x20,即,x22x2x22x+2

原式=x2x+2)﹣x2x+2

x2+xx2x+2

2

請(qǐng)參以上的解決問(wèn)題的思路和方法,解決以下問(wèn)題:

1)若a23a+10,求2a35a23+的值;

2)已知x2+,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案