如圖,在等腰三角形ABC中,∠ABC=120°,點(diǎn)P是底邊AC上一個(gè)動(dòng)點(diǎn),M、N分別是AB、BC的中點(diǎn),若PM+PN的最小值為4,則△ABC的周長(zhǎng)是   
【答案】分析:本題首先要明確P點(diǎn)在何處,通過(guò)M關(guān)于AC的對(duì)稱(chēng)點(diǎn)M′,根據(jù)勾股定理就可求出MN的長(zhǎng),根據(jù)中位線的性質(zhì)及三角函數(shù)分別求出AB、BC、AC的長(zhǎng),從而得到△ABC的周長(zhǎng).
解答:解:作M點(diǎn)關(guān)于AC的對(duì)稱(chēng)點(diǎn)M′,連接M'N,則與AC的交點(diǎn)即是P點(diǎn)的位置,
∵M(jìn),N分別是AB,BC的中點(diǎn),
∴MN是△ABC的中位線,
∴MN∥AC,
=1,
∴PM′=PN,
即:當(dāng)PM+PN最小時(shí)P在AC的中點(diǎn),
∴MN=AC
∴PM=PN=2,MN=2
∴AC=4 ,
AB=BC=2PM=2PN=4,
∴△ABC的周長(zhǎng)為:4+4+4 =8+4
故答案為:8+4
點(diǎn)評(píng):本題考查等腰三角形的性質(zhì)和軸對(duì)稱(chēng)及三角函數(shù)等知識(shí)的綜合應(yīng)用.正確確定P點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知:如圖,在等腰三角形ABC中,∠A=90°,∠ABC的平分線BD與AC交于點(diǎn)D,DE⊥BC于點(diǎn)E.求證:AD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春)感知:如圖①,點(diǎn)E在正方形ABCD的邊BC上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求證:△ABD∽△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,在等腰三角形ABC中,AB=AC,AD是BC邊上的中線,∠ABC的平分線BG,交AD于點(diǎn)E,EF⊥AB,垂足為F.
①若∠BAD=20°,則∠C=
70°
70°

②求證:EF=ED.
(2)如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
①求∠ECD的度數(shù);
②若CE=5,求BC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰三角形ABC中,AB=AC,∠A=40°,線段AB的垂直平分線交AB于點(diǎn)D,交AC于點(diǎn)E,連接BE,則∠CBE等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案