【題目】如圖,已知AB是⊙O的直徑,弦CD⊥AB于點E,點M在⊙O上,∠M=∠D.
(1)判斷BC、MD的位置關系,并說明理由;
(2)若AE=16,BE=4,求線段CD的長;
(3)若MD恰好經過圓心O,求∠D的度數.
【答案】
(1)解:BC∥MD.
理由:∵∠M=∠D,∠M=∠C,∠D=∠CBM,
∴∠M=∠D=∠C=∠CBM,
∴BC∥MD;
(2)解:∵AE=16,BE=4,
∴OB= =10,
∴OE=10﹣4=6,
連接OC,
∵CD⊥AB,
∴CE= CD,
在Rt△OCE中,
∵OE2+CE2=OC2,即62+CE2=102,解得CE=8,
∴CD=2CE=16;
(3)解:如圖2,
∵∠M= ∠BOD,∠M=∠D,
∴∠D= ∠BOD,
∵AB⊥CD,
∴∠D= ×90°=30°.
【解析】(1)根據圓周角定理可得出∠M=∠D=∠C=∠CBM,由此即可得出結論;(2)先根據AE=16,BE=4得出OB的長,進而得出OE的長,連接OC,根據勾股定理得出CE的長,進而得出結論;(3)根據題意畫出圖形,根據圓周角定理可知,∠M= ∠BOD,由∠M=∠D可知∠D= ∠BOD,故可得出∠D的度數.
【考點精析】根據題目的已知條件,利用勾股定理的概念和垂徑定理的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
科目:初中數學 來源: 題型:
【題目】宜賓市某化工廠,現有A種原料52千克,B種原料64千克,現用這些原料生產甲、乙兩種產品共20件.已知生產1件甲種產品需要A種原料3千克,B種原料2千克;生產1件乙種產品需要A種原料2千克,B種原料4千克,則生產方案的種數為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90,則∠BCE 度;
(2)設∠BAC=,∠BCE=.
①如圖2,當點D在線段BC上移動,則,之間有怎樣的數量關系?請說明理由;
②當點D在直線BC上移動,則,之間有怎樣的數量關系?請直接寫出你的結論,不必說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,身高1.6米的小明從距路燈的底部(點O)20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點P)距地面8米,小明從A到C時,身影的長度是變長了還是變短了?變長或變短了多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于函數y= ,下列說法錯誤的是( )
A.這個函數的圖象位于第一、第三象限
B.這個函數的圖象既是軸對稱圖形又是中心對稱圖形
C.當x>0時,y隨x的增大而增大
D.當x<0時,y隨x的增大而減小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】育才中學計劃召開“誠信在我心中”主題教育活動,需要選拔活動主持人,經過全校學生投票推薦,有2名男生和1名女生被推薦為候選主持人.
(1)小明認為,如果從3名候選主持人中隨機選拔1名主持人,不是男生就是女生,因此選出的主持人是男生和女生的可能性相同,你同意他的說法嗎?為什么?
(2)如果從3名候選主持人中隨機選拔2名主持人,請通過列表或樹狀圖求選拔出的2名主持人恰好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB的垂直平分線分別交AB,BC于D,E,AC的垂直平分線分別交AC,BC于F,G.
(1)若△AEG的周長為10,求線段BC的長.
(2)若∠BAC=128°,求∠EAG的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com