如圖,過(guò)正方形ABCD的頂點(diǎn)B作直線l,過(guò)A、C兩點(diǎn)分別作直線l的垂線,垂足分別為E、F.若AE=1,EF=2,則BC的長(zhǎng)度為
10
10
分析:求出AB=BC,∠BAE=∠CBF,∠AEB=∠BFC,證△ABE≌△BCF,推出AE=BF=1,在Rt△CBF中由勾股定理求出即可.
解答:解:∵四邊形ABCD是正方形,
∴AB=BC,∠BAD=∠ABC=90°,
∵AE⊥直線l,CF⊥直線l,
∴∠CFB=∠AEB=90°,
∴∠EAB+∠ABE=∠ABE+∠CBF=90°,
∴∠CBF=∠BAE,
∵在△ABE和△BCF中,
∠BAE=∠CBF
∠AEB=∠BFC
AB=BC

∴△ABE≌△BCF(AAS),
∴AE=BF=1,CF=BE=3,
∴在Rt△CBF中,由勾股定理得:BC=
BF2+CF2
=
12+32
=
10
,
故答案為:
10
點(diǎn)評(píng):本題考查了三角形內(nèi)角和定理,正方形性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,關(guān)鍵是推出AE=BF=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)B作BF∥CA交DA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.
(1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)
(2)證明四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫(xiě)出這個(gè)條件.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,以銳角△ABC的邊AB、AC向外作正方形APQB和正方形AEFC,連接PE,作AD⊥BC,垂足為D,延長(zhǎng)DA交PE于點(diǎn)H.過(guò)P作PM⊥DM,垂足為M,過(guò)點(diǎn)E作EN⊥DM,垂足為N.
(1)不再增加線條或字母,在圖中找出一對(duì)全等三角形,并給出證明;
(2)求證:PH=HE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察本題的三個(gè)圖形,思考下列問(wèn)題
(1)如圖1,正方形ABCD中,點(diǎn)M是CD上異于端點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)C作CN⊥BM于O,且交AD于N點(diǎn).求證:BM=CN;
(2)如圖2,等邊△ABC中,點(diǎn)M是CA上異于端點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)C作射線CN交AB于點(diǎn)N、交BM于點(diǎn)O,且使∠BOC=120°.
請(qǐng)你判斷此時(shí)BM與CN的大小關(guān)系,并證明你的結(jié)論.
(3)如圖3,正n邊形ABCDE…An中,點(diǎn)M是CD上異于端點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)C作射線CN交DE于點(diǎn)N、交BM于點(diǎn)O,且使BM=CN.設(shè)此時(shí)∠BOC的大小為y,請(qǐng)你寫(xiě)出y與n之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)△ABC的頂點(diǎn)A作AE⊥BC,垂足為E.點(diǎn)D是射線AE上一動(dòng)點(diǎn)(點(diǎn)D不與頂點(diǎn)A重合),連結(jié)DB、DC.已知BC=m,AD=n.

(1)若動(dòng)點(diǎn)D在BC的下方時(shí)(如圖①),AE=3,DE=2,BC=6,求S四邊形ABDC;
(2)若動(dòng)點(diǎn)D在BC的下方時(shí)(如圖①),求S四邊形ABDC的值(結(jié)果用含m、n的代數(shù)式表示);
(3)若動(dòng)點(diǎn)D在BC的上方時(shí)(如圖②),(1)中結(jié)論是否仍成立?說(shuō)明理由;
(4)請(qǐng)你按以下要求在8×6的方格中(如圖③,每一個(gè)小正方形的邊長(zhǎng)為1),設(shè)計(jì)一個(gè)軸對(duì)稱圖形.設(shè)計(jì)要求如下:對(duì)角線互相垂直且面積為6的格點(diǎn)四邊形(4個(gè)頂點(diǎn)都在格點(diǎn)上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只借助于網(wǎng)格,需寫(xiě)出結(jié)論):
(1)過(guò)點(diǎn)A畫(huà)出BC的平行線;
(2)畫(huà)出先將△ABC向右平移5格,再向上平移3格后的△DEF;

查看答案和解析>>

同步練習(xí)冊(cè)答案