【題目】本學(xué)期開(kāi)學(xué)前夕,蘇州某文具店用4000元購(gòu)進(jìn)若干書(shū)包,很快售完,接著又用4500元購(gòu)進(jìn)第二批書(shū)包,已知第二批所購(gòu)進(jìn)書(shū)包的只數(shù)是第一批所購(gòu)進(jìn)書(shū)包的只數(shù)的1.5倍,且每只書(shū)包的進(jìn)價(jià)比第一批的進(jìn)價(jià)少5元,求第一批書(shū)包每只的進(jìn)價(jià)是多少?

【答案】解:設(shè)第一批書(shū)包每只是x元,

依題意得: ×1.5= ,

解得x=20.

經(jīng)檢驗(yàn)x=20是原方程的解,且符合題意.

答:第一批書(shū)包每只的進(jìn)價(jià)是20元.


【解析】設(shè)第一批書(shū)包每只是x元,則設(shè)第二批書(shū)包每只是(x-5)元,再表示出兩批所購(gòu)進(jìn)書(shū)包的只數(shù),根據(jù)“第二批所購(gòu)進(jìn)書(shū)包的只數(shù)是第一批所購(gòu)進(jìn)書(shū)包的只數(shù)的1.5倍”可列出方程求解.注意最后一定要檢驗(yàn)根.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用分式方程的應(yīng)用的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫(xiě)出答案(要有單位).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙用4張撲克牌玩游戲,他倆將撲克牌洗勻后背面朝上,放置在桌面上,每人抽一張,甲先抽,乙后抽,抽出的牌不放回.甲、乙約定:只有甲抽到的牌面數(shù)字比乙大時(shí)甲勝;否則乙勝.請(qǐng)你用樹(shù)狀圖或列表法說(shuō)明甲、乙獲勝的機(jī)會(huì)是否相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A1,4)和點(diǎn)B

).

1)求這兩個(gè)函數(shù)的表達(dá)式;

2)觀察圖象,當(dāng)>0時(shí),直接寫(xiě)出>時(shí)自變量的取值范圍;

3)如果點(diǎn)C與點(diǎn)A關(guān)于軸對(duì)稱(chēng),求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長(zhǎng)線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.

(1)試判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解食品安全狀況,質(zhì)監(jiān)部門(mén)抽查了甲、乙、丙、丁四個(gè)品牌飲料的質(zhì)量,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:

(1)這次抽查了四個(gè)品牌的飲料共瓶;
(2)請(qǐng)你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若四個(gè)品牌飲料的平均合格率是95%,四個(gè)品牌飲料月銷(xiāo)售量約15萬(wàn)瓶,請(qǐng)你估計(jì)這四個(gè)品牌的不合格飲料有多少瓶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一塊等腰直角三角形零件(ABC,其中∠ACB90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)A,BC分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED90°,測(cè)得AD5cm,BE7cm,求該三角形零件的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為-3,B是數(shù)軸上位于點(diǎn)A右側(cè)一點(diǎn),且AB=12.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向點(diǎn)B方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)數(shù)軸上點(diǎn)B表示的數(shù)為______;點(diǎn)P表示的數(shù)為______(用含t的代數(shù)式表示).

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向點(diǎn)A方向勻速運(yùn)動(dòng);點(diǎn)P、點(diǎn)Q同時(shí)出發(fā),當(dāng)點(diǎn)P與點(diǎn)Q重合后,點(diǎn)P馬上改變方向,與點(diǎn)Q繼續(xù)向點(diǎn)A方向勻速運(yùn)動(dòng)(點(diǎn)P、點(diǎn)Q在運(yùn)動(dòng)過(guò)程中,速度始終保持不變);當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),P、Q停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

①當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值,并求出此時(shí)點(diǎn)P表示的數(shù).

②當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)和A(﹣1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,2).

(1)求拋物線解析式;
(2)點(diǎn)P是拋物線BC段上一點(diǎn),PD⊥BC,PE∥y軸,分別交BC于點(diǎn)D、E.當(dāng)DE= 時(shí),求點(diǎn)P的坐標(biāo);
(3)M是平面內(nèi)一點(diǎn),將符合(2)條件下的△PDE繞點(diǎn)M沿逆時(shí)針?lè)较蛐D(zhuǎn)90°后,點(diǎn)P,D,E的對(duì)應(yīng)點(diǎn)分別是P′、D′、E′.設(shè)P′E′的中點(diǎn)為N,當(dāng)拋物線同時(shí)經(jīng)過(guò)D′與N時(shí),求出D′的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】畫(huà)出直線y=x-1的圖象,利用圖象求:

(1)當(dāng)x≥2時(shí),y的取值范圍;

(2)當(dāng)y<0時(shí),x的取值范圍;

(3)當(dāng)-1≤y≤2時(shí),對(duì)應(yīng)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案