【題目】2017年3月23日,在世界杯預賽亞洲區(qū)12強賽A組6輪的較量中,中國足球隊以1﹣0的比分戰(zhàn)勝老對手韓國隊晉級12強.某初中學校為了了解本校800名學生對本次比賽的關注程度,以便做好引導和教育工作,隨機抽取了150名學生進行調(diào)查,按年級人數(shù)和關注程度,分別繪制了條形統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2).
(1)請你補全條形統(tǒng)計圖,并求“特別關注”所在扇形的圓心角的度數(shù);
(2)求全校不關注本場比賽的學生大約有多少名?
(3)在這次調(diào)查中 ,九年級共有兩位男生和兩位女生“不關注”本次比賽,現(xiàn)準備從四人中隨機抽取兩人進行座談,請用列表法或畫樹狀圖的方法求出抽取的兩人恰好是一男生和一女生的概率.

【答案】
(1)解:根據(jù)題意可得,八年級人數(shù)為150﹣(40+30)=80(人),

“特別關注”所在扇形的圓心角的度數(shù)為360°×(1﹣45%﹣40%)=54°,補全條形統(tǒng)計圖如下:


(2)解:800×45%=360,

答:全校不關注本場比賽的學生大約有360名


(3)解:畫樹狀圖得:

∵共有12種等可能的結(jié)果,抽取的兩人恰好是一男生和一女生的有8種結(jié)果,

∴抽取的兩人恰好是一男生和一女生的概率為 =


【解析】(1)用抽取的總?cè)藬?shù)減去七、九年級人數(shù)可得,再用360度乘以“特別關注”的百分比;(2)全校人數(shù)乘以樣本中不關注比賽的百分比可得;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好抽到一男生和一女生的情況,再利用概率公式即可求得答案.
【考點精析】認真審題,首先需要了解扇形統(tǒng)計圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況),還要掌握條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下面是經(jīng)過已知直線外一點作這條直線的垂線的尺規(guī)作圖過程:

已知:直線ll外一點P.(如圖1)

求作:直線l的垂線,使它經(jīng)過點P.

作法:如圖2

(1)在直線l上任取兩點A,B;

(2)分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;

(3)作直線PQ.

所以直線PQ就是所求的垂線.

請回答:該作圖的依據(jù)是_________________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtAOB和RtCOD中,AOB=COD=90°,B=40°,C=60°,點D在邊OA上,將圖中的COD繞點O按每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第 秒時,邊CD恰好與邊AB平行.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+2與x軸交于點A,與y軸交于點C,與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點B(1,3),連接BO,下面三個結(jié)論:①SAOB=1.5,;②點(x1 , y1)和點(x2 , y2)在反比例函數(shù)的圖象上,若x1>x2 , 則y1<y2;③不等式x+2< 的解集是0<x<1.其中正確的有(
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為EF.

(1)求證:BED≌△CFD;

(2)若∠A60°,BE1,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,C,D,ERt△MON的邊上,∠MON=90°,AE⊥ABAE=AB,BC⊥CD,BH⊥ON于點H,DF⊥ON于點F,OM=12,OE=6,BH=3,DF=4,F(xiàn)N=8,圖中陰影部分的面積為( 。

A. 30 B. 50 C. 66 D. 80

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與x軸交于兩個不同的點A(﹣4,0),B(1,0),與y軸正半軸交于點C,tan∠CAB=

(1)求拋物線的解析式并驗證點Q(﹣1,3)是否在拋物線上;
(2)點M是線段AC上一動點(不與A,C重合),過點M作x軸的垂線,垂足為H,交拋物線于點N,試判斷當MN為最大值時,以MN為直徑的圓與y軸的位置關系并說明理由;
(3)已知過點B的直線y=x﹣1交拋物線于另一點E,問:在x軸上是否存在點P,使以點P,A,Q為頂點的三角形與△AEB相似?若存在,請求出所有符合要求的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“趙爽炫圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽炫圖”是由四個全等直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為,較短直角邊長為,若(a+b)2=21,大正方形的面積為13,則小正方形的邊長為( )

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列一元一次方程解應用題:

2018年是我國改革開放40周年,改革開放是當代中國發(fā)展進步的必由之路,是實現(xiàn)中國夢的必由之路. 20181020日在國家大劇院舉行了《可愛的中國》慶祝改革開放40周年音樂會. 本次演出的票價分為以下幾個類別,如下表所示:

演出票類別

A

B

C

D

E

演出票單價(/)

300

280

240

180

100

小宇購買了A類和C類的演出票共10張,他發(fā)現(xiàn)這10張演出票的總價恰好可以購買8B類票和4E類票. 問小宇購買A類和C類的演出票各幾張?

查看答案和解析>>

同步練習冊答案