如圖83,四邊形ABCD的對角線AC和BD相交于O點,如果S△ABD=5,S△ABC=6,S△BCD=10,那么S△OBC______.

設(shè)S△BOC=S,則S△AOB=6-S,S△COD=10-S,S△AOD=S-1.由于S·(S-1)=(6-S)(10-S),解之得S=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長是4,將此正方形置于平面直角坐標(biāo)系xoy中,使AB在x軸的正半軸上,A點精英家教網(wǎng)的坐標(biāo)是(1,0)
(1)經(jīng)過點C的直線y=
4
3
x-
8
3
與x軸交于點E,求四邊形AECD的面積;
(2)若直線l經(jīng)過點E且將正方形ABCD分成面積相等的兩部分,求直線l的方程,并在坐標(biāo)系中畫出直線l.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,△ABC為正三角形,P是BC上的一點,PM⊥AB,PN⊥AC,設(shè)四邊形AMPN,△ABC的周長分別為m、n,則有( 。
A、
1
2
m
n
3
5
B、
2
3
m
n
3
4
C、80%<
m
n
<83%
D、78%<
m
n
<79%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為4的正方形置于平面直角坐標(biāo)系第一象限,使AB邊落在x軸正半軸上,且A點精英家教網(wǎng)的坐標(biāo)是(1,0).
(1)直線y=
4
3
x-
8
3
經(jīng)過點C,且與x軸交于點E,求四邊形AECD的面積;
(2)若直線l經(jīng)過點E,且將正方形ABCD分成面積相等的兩部分,求直線l的解析式;
(3)若直線l1經(jīng)過點F(-
3
2
,0
)且與直線y=3x平行.將(2)中直線l沿著y軸向上平移1個單位,交x軸于點M,交直線l1于點N,求△NMF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△PQR中,∠PQR=90°,當(dāng)PQ=RQ時,PR=
2
PQ
.根據(jù)這個結(jié)論,解決下面問題:在梯形ABCD中,∠B=45°,AD∥BC,AB=5,AD=4,BC=8
3
,P是線段BC上一動點,點P從點B出發(fā),以每秒
2
個單位的速度向C點運動.

(1)當(dāng)BP=
8
3
-4
8
3
-4
時,四邊形APCD為平行四邊形;
(2)求四邊形ABCD的面積;
(3)設(shè)P點在線段BC上的運動時間為t秒,當(dāng)P運動時,△APB可能是等腰三角形嗎?如能,請求出t的值;如不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(A題)小明家準(zhǔn)備建造長為28米的蔬菜大棚,示意圖如圖1.它的橫截面為如圖2所示的四邊形ABCD,已知AB=3米,BC=6米,∠BCD=45°,AB⊥BC,D到BC的距離DE為1米.矩形棚頂ADD′A′及矩形DCC′D′由鋼架及塑料薄膜制作,造價為每平方米120元,其它部分(保溫墻體等)造價共9250元,則這個大棚的總造價為多少元?(精確到1元)
(下列數(shù)據(jù)可供參考
2
=1.41,
3
=1.73,
5
=2.24,
29
=5.39,
34
=5.83)
精英家教網(wǎng)
(B題)如圖,河邊有一條筆直的公路l,公路兩側(cè)是平坦的草地.在數(shù)學(xué)活動課上,老師要求測量河對岸B點到公路的距離,請你設(shè)計一個測量方案.要求:
(1)列出你測量所使用的測量工具;
(2)畫出測量的示意圖,寫出測量的步驟;
(3)用字母表示測得的數(shù)據(jù),求出B點到公路的距離.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案