【題目】如圖①,C為線段BE上的一點,分別以BC和CE為邊在BE的同側(cè)作正方形ABCD和正方形CEFG,M、N分別是線段AF和GD的中點,連接MN

(1)線段MN和GD的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)將圖①中的正方形CEFG繞點C逆時針旋轉(zhuǎn)90°,其他條件不變,如圖②,(1)的結(jié)論是否成立?說明理由;
(3)已知BC=7,CE=3,將圖①中的正方形CEFG繞點C旋轉(zhuǎn)一周,其他條件不變,直接寫出MN的最大值和最小值.

【答案】
(1)MN= DG;MN⊥DG
(2)

解:的結(jié)論仍然成立.

理由:過點M作MT⊥DC于T,過點M作MR⊥BC于R,連接FC、MD、MG,如圖②,

則A、F、C共線,MR∥FG∥AB,MT∥EF∥AD.

∵AM=FM,

∴BR=GR= BG,DT=ET= DE,

∴MR= (FG+AB),MT= (EF+AD).

∵四邊形ABCD和四邊形EFGC都是正方形,

∴FG=GC=EC=EF,AB=BC=DC=AD,

∴MR=MT,RG=TD.

在△MRG和△MTD中,

,

∴△MRG≌△MTD,

∴MG=MD,∠RMG=∠TMD,

∴∠RMT=∠GMD.

∵∠MRC=∠RCT=∠MTC=90°,

∴四邊形MRCT是矩形,

∴∠RMT=90°,

∴∠GMD=90°.

∵MG=MD,∠GMD=90°,DN=GN,

∴MN⊥DG,MN= DG.


(3)

解:延長GM到點P,使得PM=GM,延長GF、AD交于點Q,連接AP,DP,DM如圖③,

在△AMP和△FMG中,

∴△AMP≌△FMG,

∴AP=FG,∠APM=∠FGM,

∴AP∥GF,

∴∠PAQ=∠Q,

∵∠DOG=∠ODQ+∠Q=∠OGC+∠GCO,

∠ODQ=∠OGC=90°,

∴∠Q=∠GCO,

∴∠PAQ=∠GCO.

∵四邊形ABCD和四邊形EFGC都是正方形,

∴DA=DC,GF=GC,

∴AP=CG.

在△APD和△CGD中,

∴△APD≌△CGD,

∴PD=DG.

∵PM=GM,

∴DM⊥PG.

∵DN=GN,

∴MN= DG.

∵GC=CE=3,

∴點G在以點C為圓心,3為半徑的圓上,

∵DC=BC=7,

∴DG的最大值為7+3=10,最小值為7﹣3=4,

∴MN的最大值為5,最小值為2.


【解析】解:(1)連接FN并延長,與AD交于點S,如圖①.

∵四邊形ABCD和四邊形EFGC都是正方形,
∴∠D=90°,AD=DC,GC=GF,AD∥BE∥GF,
∴∠DSN=∠GFN.
在△SDN和△FGN中,
,
∴△SDN≌△FGN,
∴DS=GF,SN=FN.
∵AM=FM,
∴MN∥AS,MN= AS,
∴∠MNG=∠D=90°,
MN= (AD﹣DS)= (DC﹣GF)= (DC﹣GC)= DG.
故答案為MN= DG,MN⊥DG;
(1)連接FN并延長,與AD交于點S,如圖①,易證△SDN≌△FGN,則有DS=GF,SN=FN,然后運用三角形中位線定理就可解決問題;(2)過點M作MT⊥DC于T,過點M作MR⊥BC于R,連接FC、MD、MG,如圖②,根據(jù)平行線分線段成比例可得BR=GR= BG,DT=ET= DE,根據(jù)梯形中位線定理可得MR= (FG+AB),MT= (EF+AD),從而可得MR=MT,RG=TD,由此可得△MRG≌△MTD,則有MG=MD,∠RMG=∠TMD,則有∠RMT=∠GMD,進而可證到△DMG是等腰直角三角形,然后根據(jù)等腰三角形的性質(zhì)和直角三角形斜邊上的中線等于斜邊的一半,就可解決問題;(3)連接GM到點P,使得PM=GM,延長GF、AD交于點Q,連接AP,DP,DM如圖③,易證△APD≌△CGD,則有PD=DG,根據(jù)等腰三角形的性質(zhì)可得DM⊥PG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得MN= DG.要求MN的最大值和最小值,只需求DG的最大值和最小值,由GC=CE=3可知點G在以點C為圓心,3為半徑的圓上,再由DC=BC=7,就可求出DG的最大值和最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D為 的中點.
(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與x和y軸分別交于點B和點C,與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動.

(1)求點B和點C的坐標.

(2)求△OAC的面積.

(3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在,求出此時點M的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,AB=17,AC=10,BC邊上的高AD=8,則邊BC的長為( )

A. 21 B. 15 C. 9 D. 9或21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點C,交AD于點E,CG⊥AD于點G,連接FE,F(xiàn)C.
(1)求證:GC是⊙F的切線;
(2)填空: ①若∠BAD=45°,AB=2 ,則△CDG的面積為
②當(dāng)∠GCD的度數(shù)為時,四邊形EFCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0),B(3,0)兩點,與y軸交于點C,其頂點為點D,點E的坐標為(0,﹣1),該拋物線與BE交于另一點F,連接BC.

(1)求該拋物線的解析式;
(2)一動點M從點D出發(fā),以每秒1個單位的速度沿與y軸平行的方向向上運動,連接OM,BM,設(shè)運動時間為t秒(t>0),在點M的運動過程中,當(dāng)t為何值時,∠OMB=90°?
(3)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L1過A(0,2),B(2,0)兩點,直線L2:y=mx+b過點C(1,0),且把△AOB分成兩部分,其中靠近原點的那部分是一個三角形,設(shè)此三角形的面積為S,求S關(guān)于m的函數(shù)解析式,及自變量m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某手機經(jīng)銷商計劃同時購進一批甲、乙兩種型號手機,若購進2部甲型號手機和5部乙型號手機,共需要資金6000元;若購進3部甲型手機和2部乙型手機,共需要資金4600

(1) 求甲、乙型號手機每部進價為多少元?

(2) 為了提高利潤,該店計劃購進甲、乙型號手機銷售,預(yù)計用不多于1.84萬元且不少于1.76萬元的資金購進這兩種手機共20部,請問有幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=7,AC=A=45°,AHHC,垂足為H。

1)求證:AHC是等腰直角三角形;

2)求BC的長.

查看答案和解析>>

同步練習(xí)冊答案