如圖,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,動點P從點B出發(fā),在BA邊上以每秒5 cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4 cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值;
(3)試證明:PQ的中點在△ABC的一條中位線上.
(1)t=1或;(2);(3)證明見解析.
解析試題分析:(1)分兩種情況討論:①當△BPQ∽△BAC時, ,當△BPQ∽△BCA時, ,再根據BP=5t,QC=4t,AB=10cm,BC=8cm,代入計算即可.
(2)過P作PM⊥BC于點M,AQ,CP交于點N,則有PB=5t,PM=3t,MC=8-4t,根據△ACQ∽△CMP,得出 ,代入計算即可.
(3)過P作PD⊥AC于點D,連接DQ,BD,BD交PQ于點M,過點M作EF∥AC分別交BC,BA于E,F兩點,
證明四邊形PDQB是平行四邊形,則點M是PQ和BD的中點,進而由得到點E為BC的中點,由得到點F為BA的中點,因此,PQ中點在△ABC的中位線上.
試題解析:(1)①當△BPQ∽△BAC時,
∵ ,BP=5t,QC=4t,AB=10cm,BC=8cm,∴,解得t=1;
②當△BPQ∽△BCA時,∵,∴ ,解得.
∴t=1或時,△BPQ與△ABC相似.
(2)如答圖,過P作PM⊥BC于點M,AQ,CP交于點N,則有PB=5t,PM=3t,MC=8-4t,
∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,
∴△ACQ∽△CMP.∴.∴ ,解得:.
(3)如答圖,過P作PD⊥AC于點D,連接DQ,BD,BD交PQ于點M,
則,
∵,∴PD=BQ且PD∥BQ.∴四邊形PDQB是平行四邊形.∴點M是PQ和BD的中點.
過點M作EF∥AC分別交BC,BA于E,F兩點,
則,即點E為BC的中點.
同理,點F為BA的中點.
∴PQ中點在△ABC的中位線上.
考點:1.雙動點問題;2.相似三角形的判定和性質;3平行四邊形的判定和性質;4.三角形中位線的判定..
科目:初中數學 來源: 題型:解答題
在13×13的網格圖中,已知△ABC和點M(1,2).
(1)以點M為位似中心,位似比為2,畫出△ABC的位似圖形△A′B′C′;
(2)寫出△A′B′C′的各頂點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A,C的坐標分別為(-2,4),(2,1).
(1)請在如圖所示的網格平面內作出平面直角坐標系;
(2)請作出△ABC關于y軸對稱的△A′B′C′;
(3)若△ADE是△ABC關于點A的位似圖形,且E的坐標為(6,-2),則點D的坐標為 , 四邊形BCED面積是 .
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:△ABD和△CBD關于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點G.
(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當AB=AD時,M是線段AG上一點,連接BM、ED、MF,MF的延長線交ED于點N,∠MBF=∠BAF,AF=AD,請你判斷線段FM和FN之間的數量關系,并證明你的判斷是正確的.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
類比、轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整,原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若=3,求的值.
(1)嘗試探究:
在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數量關系是________,
CG和EH的數量關系是________,
的值是________.
(2)類比延伸:
如圖2,在原題條件下,若=m(m>0)則的值是________(用含有m的代數式表示),試寫出解答過程.
(3)拓展遷移:
如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F,若=a,=b(a>0,b>0)則的值是________(用含a、b的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,矩形ABCD中,以對角線BD為一邊構造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.
(1)設Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1 S2+S3(用“>”、“=”、“<”填空);
(2)寫出如圖中的三對相似三角形,并選擇其中一對進行證明.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在Rt△ABC中,AB=AC=4.一動點P從點B出發(fā),沿BC方向以每秒1個單位長度的速度勻速運動,到達點C即停止.在整個運動過程中,過點P作PD⊥BC與Rt△ABC的直角邊相交于點D,延長PD至點Q,使得PD=QD,以PQ為斜邊在PQ左側作等腰直角三角形PQE.設運動時間為t秒(t>0).
(1)在整個運動過程中,設△ABC與△PQE重疊部分的面積為S,請直接寫出S與t之間的函數關系式以及相應的自變量t的取值范圍;
(2)當點D在線段AB上時,連接AQ、AP,是否存在這樣的t,使得△APQ成為等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由;
(3)當t=4秒時,以PQ為斜邊在PQ右側作等腰直角三角形PQF,將四邊形PEQF繞點P旋轉,PE與線段AB相交于點M,PF與線段AC相交于點N.試判斷在這一旋轉過程中,四邊形PMAN的面積是否發(fā)生變化?若發(fā)生變化,求出四邊形PMAN的面積y與PM的長x之間的函數關系式以及相應的自變量x的取值范圍;若不發(fā)生變化,求出此定值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知∠AOB=90°,OM是∠AOB的平分線,按以下要求解答問題:
(1)如圖1,將三角板的直角頂點P在射線OM上移動,兩直角邊分別與OA,OB交于點C,D.
①比較大。篜C______PD. (選擇“>”或“<”或“=”填空);
②證明①中的結論.
(2)將三角板的直角頂點P在射線OM上移動,一直角邊與邊OA交于點C,且OC=1,另一直角邊與直線OB,直線OA分別交于點D,E,當以P,C,E為頂點的三角形與△OCD相似時,試求的長.(提示:請先在備用圖中畫出相應的圖形,再求的長).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com