【題目】三角形的兩邊長分別為46,第三邊長是方程x27x120的解,則第三邊的長為(  )

A. 3 B. 4 C. 34 D. 無法確定

【答案】B

【解析】

解方程x2-7x+12=0 x1=3,x2=4;

∵三角形的兩邊長分別為47,

∴7-4<第三邊<7+4

3<第三邊<11

∴第三邊和長為4,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a>0,b<﹣2,則點(a,b+2)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省樂山市第22題)“六一”期間,小張購進100只兩種型號的文具進行銷售,其進價和售價之間的關(guān)系如下表:

(1)小張如何進貨,使進貨款恰好為1300元?

(2)要使銷售文具所獲利潤最大,且所獲利潤不超過進貨價格的40%,請你幫小張設(shè)計一個進貨方案,并求出其所獲利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y= -x+2與y軸交于點A,點A關(guān)于x軸的對稱點為B,過點By軸的垂線l,直線l與直線y= -x+2交于點C

(1)求點B、C的坐標(biāo);

(2)若直線y=2x+b與△ABC有兩個公共點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a、b互為相反數(shù),c、d互為倒數(shù),那么2a+2b-5cd=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(2a4)x2(3a6)xa80沒有常數(shù)項,則a的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+6(a≠0)交x軸與A,B兩點(點A在點B左側(cè)),將直尺WXYZ與x軸負方向成45°放置,邊WZ經(jīng)過拋物線上的點C(4,m),與拋物線的另一交點為點D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.

(1)求該拋物線的解析式;

(2)探究:在直線AC上方的拋物線上是否存在一點P,使得△ACP的面積最大?若存在,請求出面積的最大值及此時點P的坐標(biāo);若不存在,請說明理由.

(3)將直尺以每秒2個單位的速度沿x軸向左平移,設(shè)平移的時間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點M,與拋物線的其中一個交點為點N,請直接寫出當(dāng)t為何值時,可使得以C、D、M、N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx﹣3經(jīng)過(﹣1,0),(3,0)兩點,與y軸交于點C,直線y=kx與拋物線交于A,B兩點.

(1)寫出點C的坐標(biāo)并求出此拋物線的解析式;

(2)當(dāng)原點O為線段AB的中點時,求k的值及A,B兩點的坐標(biāo);

(3)是否存在實數(shù)k使得△ABC的面積為?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,已知:點在雙曲線上,直線,直線關(guān)于原點成中心對稱,兩點間的連線與曲線第一象限內(nèi)的交點為,是曲線上第一象限內(nèi)異于的一動點,過軸平行線分別交,兩點.

(1)求雙曲線及直線的解析式;

(2)求證:;

(3)如圖2所示,的內(nèi)切圓與邊分別相切于點,求證:點與點重合.(參考公式:在平面坐標(biāo)系中,若有點,,則A、B兩點間的距離公式為=.

查看答案和解析>>

同步練習(xí)冊答案