已知:如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(5,0)、C(0,5)三點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過(guò)點(diǎn)C的直線y=kx+b與拋物線相交于點(diǎn)E(4,m),請(qǐng)求出△CBE的面積S的值;
(3)寫(xiě)出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點(diǎn)P使得△ABP為等腰三角形?若存在,請(qǐng)指出一共有幾個(gè)滿足條件的點(diǎn)P,并求出其中一個(gè)點(diǎn)的坐標(biāo);若不存在這樣的點(diǎn)P,請(qǐng)說(shuō)明理由.
(1)∵A(1,0),B(5,0),
設(shè)拋物線y=ax2+bx+c=a(x-1)(x-5),
把C(0,5)代入得:5=a(0-1)(0-5),
解得:a=1,
∴y=(x-1)(x-5)=x2-6x+5,
答:拋物線的函數(shù)關(guān)系式是y=x2-6x+5.

(2)把x=4代入y=x2-6x+5得:y=-3,
∴E(4,-3),
把C(0,5),E(4,-3)代入y=kx+b得:
5=b
-3=
4k+b

解得:k=-2,b=5,
∴y=-2x+5,
CE交X軸于D,
當(dāng)y=0時(shí),0=-2x+5,
∴x=
5
2
,
∴OD=
5
2
,
BD=5-
5
2
=
5
2
,
∴△CBE的面積是:S△CBD+S△EBD=
1
2
×
5
2
×5+
1
2
×
5
2
×|-3|=10,
答:△CBE的面積S的值是10.

(3)由圖象知:當(dāng)x<0或x>4時(shí),二次函數(shù)值大于一次函數(shù)值,
答:二次函數(shù)值大于一次函數(shù)值的x的取值范圍是x<0或x>4.

(4)∵拋物線的頂點(diǎn)P(3,-4)既在拋物線的對(duì)稱軸上又在拋物線上,
∴點(diǎn)P(3,-4)為所求滿足條件的點(diǎn).
除P點(diǎn)外,在拋物線上還存在其它的點(diǎn)P使得△ABP為等腰三角形.
理由如下:
∵AP=BP=
22+42
=2
5
>4,
∴分別以A、B為圓心半徑長(zhǎng)為4畫(huà)圓,分別與拋物線交于點(diǎn)B、P1、P2、P3、A、P4、P5、P6,除去B、A兩個(gè)點(diǎn)外,其余6個(gè)點(diǎn)為滿足條件的點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:直線y=2x+6與x軸和y軸分別交于A、C兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、C,點(diǎn)B是拋物線與x軸的另一個(gè)交點(diǎn).
(1)求拋物線的解析式及B的坐標(biāo);
(2)設(shè)點(diǎn)P是直線AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于M、N兩點(diǎn),問(wèn):是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2-5x+4a與x軸相交于點(diǎn)A、B,且經(jīng)過(guò)點(diǎn)C(5,4).該拋物線頂點(diǎn)為P.
(1)求a的值和該拋物線頂點(diǎn)P的坐標(biāo).
(2)求△PAB的面積;
(3)若將該拋物線先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(x1,0),B(x2,0)(A在B的左邊),且x1+x2=4.
(1)求b的值及c的取值范圍;
(2)如果AB=2,求拋物線的解析式;
(3)設(shè)此拋物線與y軸的交點(diǎn)為C,頂點(diǎn)為D,對(duì)稱軸與x軸的交點(diǎn)為E,問(wèn)是否存在這樣的拋物線,使△AOC≌BED全等,如果存在,求出拋物線的解析式;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),直線y=kx+b與x軸交于點(diǎn)A(3,0),與y軸的正半軸交于點(diǎn)B,tan∠OAB=
3

(1)求這直線的解析式;
(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,點(diǎn)B落到點(diǎn)C的位置,求以點(diǎn)C為頂點(diǎn)且經(jīng)過(guò)點(diǎn)A的拋物線的解析式;
(3)設(shè)(2)中的拋物線與x軸的另一個(gè)交點(diǎn)為點(diǎn)D,與y軸的交點(diǎn)為E.試判斷△ODE是否與△OAB相似?如果認(rèn)為相似,請(qǐng)加以證明;如果認(rèn)為不相似,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在向汶川地震災(zāi)區(qū)執(zhí)行空投任務(wù)中,一架飛機(jī)在空中沿著水平方向向空投地O處上方直線飛行,飛行員在A點(diǎn)測(cè)得O處的俯角為30°,繼續(xù)向前飛行1千米到達(dá)B處測(cè)得O處的俯角為60°.飛機(jī)繼續(xù)飛行0.1千米到達(dá)E處進(jìn)行空投,已知空投物資在空中下落過(guò)程中的軌跡是拋物線,若要使空投物資剛好落在O處.
(1)求飛機(jī)的飛行高度.
(2)以拋物線頂點(diǎn)E為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求拋物線的解析式.(所有答案可以用根號(hào)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y1=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)三點(diǎn)(1,0),(-3,0),(0,-
3
2
).
(1)求二次函數(shù)的解析式,并在給定的直角坐標(biāo)系中作出這個(gè)函數(shù)的圖象;
(2)若反比例函數(shù)y2=
2
x
(x>0)的圖象與二次函數(shù)y1=ax2+bx+c(a≠0)的圖象在第一象限內(nèi)交于點(diǎn)A(x0,y0),x0落在兩個(gè)相鄰的正整數(shù)之間,請(qǐng)你觀察圖象,寫(xiě)出這兩個(gè)相鄰的正整數(shù);
(3)若反比例函數(shù)y2=
k
x
(x>0,k>0)的圖象與二次函數(shù)y1=ax2+bx+c(a≠0)的圖象在第一象限內(nèi)的交點(diǎn)A,點(diǎn)A的橫坐標(biāo)x0滿足2<x0<3,試求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線y=-
1
2
x
與拋物線y=-
1
4
x2+6
交于A、B兩點(diǎn),取與線段AB等長(zhǎng)的一根橡皮筋,端點(diǎn)分別固定在A、B兩處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動(dòng),動(dòng)點(diǎn)P將與A、B構(gòu)成無(wú)數(shù)個(gè)三角形,這些三角形中存在一個(gè)面積最大的三角形,最大面積為( 。
A.12
6
B.
125
2
C.
125
4
D.
23
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)y1=ax2-2bx+c和y2=(a+1)•x2-2(b+2)x+c+3在同一坐標(biāo)系中的圖象如圖所示,若OB=OA,BC=DC,且點(diǎn)B,C的橫坐標(biāo)分別為1,3,求這兩個(gè)函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案