已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(x1,0),B(x2,0)(A在B的左邊),且x1+x2=4.
(1)求b的值及c的取值范圍;
(2)如果AB=2,求拋物線的解析式;
(3)設(shè)此拋物線與y軸的交點(diǎn)為C,頂點(diǎn)為D,對(duì)稱軸與x軸的交點(diǎn)為E,問是否存在這樣的拋物線,使△AOC≌BED全等,如果存在,求出拋物線的解析式;如果不存在,請(qǐng)說明理由.
(1)由已知得:x1、x2是方程-x2+bx+c=0的兩根,
∴△=b2-4•(-1)•c>0,x1+x2=b,
又x1+x2=4,
∴b=4,c>-4;

(2)由(1)可得y=-x2+4x+c,x1+x2=4,x1•x2=-c,
而AB=|x1-x2|=2,
∴(x1-x22=4,
即(x1+x22-4x1x2=4,16+4c=4,
解得c=-3,
∴拋物線解析式為y=-x2+4x-3;

(3)存在;由(1)可得y=-x2+4x+c,
∴C(0,c),D(2,c+4);
當(dāng)OC=DE時(shí),|c|=c+4,
解得c=-2,
當(dāng)OC=BE時(shí),AB=2OC,
即|x1-x2|=2|c|,
∴(x1-x22=4c2;16+4c=4c2
解得c=
1+
17
2
1-
17
2
;
滿足題意的拋物線解析式為:y=-x2+4x+
1+
17
2
,y=-x2+4x+
1-
17
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的頂點(diǎn)坐標(biāo)為(2,0),直線y=x+2與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)在y軸上,
(I)求此二次函數(shù)的解析式.
(II)P為線段AB上一點(diǎn)(A,B兩端點(diǎn)除外),過P點(diǎn)作x軸的垂線PC與(I)中的二此函數(shù)的圖象交于Q點(diǎn),設(shè)線段PQ的長為m,P點(diǎn)的橫坐標(biāo)為x,求出函數(shù)m與自變量x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(III)線段AB上是否存在一點(diǎn),使(II)中的線段PQ的長等于5?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線y=
2
5
x+2與x軸交于點(diǎn)A,交y軸于C、拋物線y=ax2+4ax+b經(jīng)過A、C兩點(diǎn),拋物線交x軸于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)點(diǎn)Q在拋物線上,且有△AQC和△BQC面積相等,求點(diǎn)Q的坐標(biāo);
(3)如圖2,點(diǎn)P為△AOC外接圓上
ACO
的中點(diǎn),直線PC交x軸于D,∠EDF=∠ACO.當(dāng)∠EDF繞D旋轉(zhuǎn)時(shí),DE交AC于M,DF交y軸負(fù)半軸于N、問CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示是一個(gè)拋物線形橋拱的示意圖,在所給出的平面直角坐標(biāo)系中,當(dāng)水位在AB位置時(shí),水面寬度為10m,此時(shí)水面到橋拱的距離是4m,則拋物線的函數(shù)關(guān)系式為( 。
A.y=
25
4
x2
B.y=-
25
4
x2
C.y=-
4
25
x2
D.y=
4
25
x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,其頂點(diǎn)為D,且直線DC的解析式為y=x+3.
(1)求二次函數(shù)的解析式;
(2)求△ABC外接圓的半徑及外心的坐標(biāo);
(3)若點(diǎn)P是第一象限內(nèi)拋物線上一動(dòng)點(diǎn),求四邊形ACPB的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)A,B,M的坐標(biāo)分別為(1,4)、(4,4)和(-1,0),拋物線y=ax2+bx+c的頂點(diǎn)在線段AB(包括線段端點(diǎn))上,與x軸交于C、D兩點(diǎn),點(diǎn)C在線段OM上(包括線段端點(diǎn)),則點(diǎn)D的橫坐標(biāo)m的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD是等腰梯形,其中ADBC,AD=2,BC=4,AB=DC=2,點(diǎn)M從點(diǎn)B開始,以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng);點(diǎn)N從點(diǎn)D開始,沿D→A→B方向,以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng).若點(diǎn)M、N同時(shí)開始運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0).過點(diǎn)N作NP⊥BC與P,交BD于點(diǎn)Q.
(1)點(diǎn)D到BC的距離為______;
(2)求出t為何值時(shí),QMAB;
(3)設(shè)△BMQ的面積為S,求S與t的函數(shù)關(guān)系式;
(4)求出t為何值時(shí),△BMQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

四邊形OABC是等腰梯形,OABC.在建立如圖的平面直角坐標(biāo)系中,A(4,0),B(3,2),點(diǎn)M從O點(diǎn)以每秒2個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng);同時(shí)點(diǎn)N從B點(diǎn)出發(fā)以每秒1個(gè)單位的速度向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)N作NP垂直于x軸于P點(diǎn)連接AC交NP于Q,連接MQ.
(1)寫出C點(diǎn)的坐標(biāo);
(2)若動(dòng)點(diǎn)N運(yùn)動(dòng)t秒,求Q點(diǎn)的坐標(biāo);(用含t的式子表示)
(3)其△AMQ的面積S與時(shí)間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(4)當(dāng)t取何值時(shí),△AMQ的面積最大;
(5)當(dāng)t為何值時(shí),△AMQ為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點(diǎn).
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點(diǎn)C的直線y=kx+b與拋物線相交于點(diǎn)E(4,m),請(qǐng)求出△CBE的面積S的值;
(3)寫出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點(diǎn)P使得△ABP為等腰三角形?若存在,請(qǐng)指出一共有幾個(gè)滿足條件的點(diǎn)P,并求出其中一個(gè)點(diǎn)的坐標(biāo);若不存在這樣的點(diǎn)P,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案