如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )

A.3:4
B.:2
C.:2
D.2
【答案】分析:連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,根據(jù)三角形的面積和平行四邊形的面積得出S△DEC=S△DFA=S平行四邊形ABCD,求出AF×DP=CE×DQ,設(shè)AB=3a,BC=2a,則BF=a,BE=2a,BN=a,BM=a,F(xiàn)N=a,CM=a,求出AF=a,CE=2a,代入求出即可.
解答:解:連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,
∵根據(jù)三角形的面積和平行四邊形的面積得:S△DEC=S△DFA=S平行四邊形ABCD,
AF×DP=CE×DQ,
∴AF×DP=CE×DQ,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∵∠DAB=60°,
∴∠CBN=∠DAB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴設(shè)AB=3a,BC=2a,
∵AE:EB=1:2,F(xiàn)是BC的中點(diǎn),
∴BF=a,BE=2a,
BN=a,BM=a,
由勾股定理得:FN=a,CM=a,
AF==a,
CE==2a,
a•DP=2a•DQ
∴DP:DQ=2
故選D.
點(diǎn)評(píng):本題考查了平行四邊形面積,勾股定理,三角形的面積,含30度角的直角三角形等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是求出AF×DP=CE×DQ和求出AF、CE的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫出直線AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說明理由;如果能,說明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案