【題目】八年級甲班和乙班各推選10名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了10個(gè)球;將兩班選手的進(jìn)球數(shù)繪制成如下尚不完整的統(tǒng)計(jì)圖表:
(1)表格中b=_________.c=_________;并求a的值;
(2)如果要從這兩個(gè)班中選出一個(gè)班代表年級參加學(xué)校的投籃比賽,爭取奪得總進(jìn)球數(shù)團(tuán)體第一名,你認(rèn)為應(yīng)該選擇哪個(gè)班?如果要爭取個(gè)人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個(gè)班?請說明理由。
【答案】(1)7,7,7;(2)選擇甲班;選擇乙班.
【解析】
(1)利用平均數(shù)、中位數(shù)和眾數(shù)的定義直接求出;
(2)根據(jù)方差和個(gè)人發(fā)揮的最好成績進(jìn)行選擇.
(1)甲班選手進(jìn)球數(shù)次數(shù)最多的是7個(gè)球,共有4次,故眾數(shù)為7;
乙班選手進(jìn)球數(shù)的平均數(shù)為
按大小順序排列,最中間的兩個(gè)數(shù)為:7,7,故其中位數(shù)為:;
∴a=7,b=7,c=7;
(2)甲班S12=[(5-7)2+(6-7)2×2+2×(8-7)2+4×(7-7)2+1×(9-7)2]=1.2,
乙班S22= [(10-7)2+(9-7)2+2×(8-7)2+4×(7-7)2+(4-7)2+(3-7)2]=4.
∵乙方差>甲方差,
∴要爭取奪取總進(jìn)球團(tuán)體第一名,應(yīng)選甲班.
∵乙班有一位百發(fā)百中的出色選手,
∴要進(jìn)入學(xué)校個(gè)人前3名,應(yīng)選乙班.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,過對角線BD的中點(diǎn)O的直線分別交AB、CD于點(diǎn)E、F,連接DE,BF.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的“學(xué)習(xí)強(qiáng)國”知識(shí)競賽中,每班參加比賽的人數(shù)相同,成績分為,,,四個(gè)等級其中相應(yīng)等級的得分依次記為分,分,分和分.年級組長張老師將班和班的成績進(jìn)行整理并繪制成如下的統(tǒng)計(jì)圖:
(1)在本次競賽中,班級的人數(shù)有多少。
(2)請你將下面的表格補(bǔ)充完整:
成績 班級 | 平均數(shù)(分) | 中位數(shù) (分) | 眾數(shù) (分) | B級及以上人數(shù) |
班 | ||||
班 |
(3)結(jié)合以上統(tǒng)計(jì)量,請你從不同角度對這次競賽成績的結(jié)果進(jìn)行分析(寫出兩條)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過或不足多少千克?
(3)若白菜每千克售價(jià)2.8元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(規(guī)律探索)如圖所示的是由相同的小正方形組成的圖形,每個(gè)圖形的小正方形個(gè)數(shù)為Sn,n是正整數(shù).觀察下列圖形與等式之間的關(guān)系.
第一組:
第二組:
第三組:
(規(guī)律歸納)
(1)S7﹣S6= ;Sn﹣Sn﹣1= .
(2)S7+S6= ;Sn+Sn﹣1= .
(規(guī)律應(yīng)用)
(3)計(jì)算的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根為x1,x2(x1<x2),分別以x1,x2為橫坐標(biāo)和縱坐標(biāo)得到點(diǎn)M(x1,x2),則稱點(diǎn)M為該一元二次方程的衍生點(diǎn).
(1)若方程為x2-2x=0,寫出該方程的衍生點(diǎn)M的坐標(biāo).
(2)若關(guān)于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生點(diǎn)為M,過點(diǎn)M向x軸和y軸作垂線,兩條垂線與坐標(biāo)軸恰好圍成一個(gè)正方形,求m的值.
(3)是否存在b,c,使得不論k(k≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點(diǎn)M始終在直線y=kx-2(k-2)的圖象上,若有請直接寫出b,c的值,若沒有說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)矩形娛樂場所,其設(shè)計(jì)方案如圖所示.其中半圓形休息區(qū)和矩形游泳池以外的地方都是綠地.試解答下列問題:
(1)游泳池和休息區(qū)的面積各是多少?
(2)綠地面積是多少?
(3)如果這個(gè)娛樂場所的長是寬的1.5倍,要求綠地面積占整個(gè)面積的一半以上.小亮同學(xué)根據(jù)要求,設(shè)計(jì)的游泳池的長和寬分別是大矩形長和寬的一半,你說他的設(shè)計(jì)符合要求嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求直線AB和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出當(dāng)x滿足什么范圍時(shí),直線AB在雙曲線的下方;
(3)反比例函數(shù)的圖象上是否存在點(diǎn)C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購進(jìn)某種礦石原料300噸,用于生產(chǎn)甲、乙兩種產(chǎn)品,生產(chǎn)1噸甲產(chǎn)品或1噸乙產(chǎn)品所需該礦石和煤原料的噸數(shù)如下表:
產(chǎn)品資源 | 甲 | 乙 |
礦石(噸) | 10 | 4 |
煤(噸) | 4 | 8 |
生產(chǎn)1噸甲產(chǎn)品所需成本費(fèi)用為4000元,每噸售價(jià)4600元;
生產(chǎn)1噸乙產(chǎn)品所需成本費(fèi)用為4500元,每噸售價(jià)5500元,
現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.
(1)寫出m與x之間的關(guān)系式
(2)寫出y與x之間的函數(shù)表達(dá)式,并寫出自變量的范圍
(3)若用煤不超過200噸,生產(chǎn)甲產(chǎn)品多少噸時(shí),公司獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com