【題目】已知數(shù)列{an}的首項(xiàng)a1=4,當(dāng)n≥2時(shí),an﹣1an﹣4an﹣1+4=0,數(shù)列{bn}滿足bn=
(1)求證:數(shù)列{bn}是等差數(shù)列,并求{bn}的通項(xiàng)公式;
(2)若cn=4bn(nan﹣6),如果對(duì)任意n∈N* , 都有cn+ t≤2t2 , 求實(shí)數(shù)t的取值范圍.
【答案】
(1)證明:當(dāng)n≥2時(shí),bn﹣bn﹣1= ﹣ = ,
由于an﹣1an﹣4an﹣1+4=0,
所以bn﹣bn﹣1=﹣ ,即數(shù)列{bn}是等差數(shù)列,
又因?yàn)閎1= =﹣ ,
所以bn= +(n﹣1)( )=﹣
(2)由(1)及bn=bn= 可知an= +2,
所以cn=4bn(nan﹣6)= (2n﹣4),
由單調(diào)性可知:﹣1≤cn≤ ,
令y=cn+ t﹣2t2,則y是關(guān)于cn的一次函數(shù),且單調(diào)遞增,
所以當(dāng)cn= 時(shí)y≤0即可,
所以 + t﹣2t2≤0,解得:t≤﹣ 或t≥ ,
故實(shí)數(shù)t的取值范圍是:(﹣∞,﹣ ]∪[ ,+∞)
【解析】(1)通過作差可知bn﹣bn﹣1= ,結(jié)合an﹣1an﹣4an﹣1+4=0可知bn﹣bn﹣1=﹣ ,進(jìn)而利用數(shù)列{bn}是等差數(shù)列即可求出通項(xiàng)公式;(2)通過(1)及bn=bn= 可知an= +2,進(jìn)而可知cn= (2n﹣4),結(jié)合單調(diào)性可知﹣1≤cn≤ ,將y=cn+ t﹣2t2看作是關(guān)于cn的一次函數(shù),結(jié)合其單調(diào)遞增可知當(dāng)cn= 時(shí)y≤0即可,進(jìn)而問題轉(zhuǎn)化為解不等式 + t﹣2t2≤0,計(jì)算即得結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.
(1)直接寫出函數(shù)y= 圖象上的所有“整點(diǎn)”A1 , A2 , A3 , …的坐標(biāo);
(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)a、b滿足條件a>b>0時(shí), =1表示焦點(diǎn)在x軸上的橢圓.若 =1表示焦點(diǎn)在x軸上的橢圓,則m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐ABC﹣A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2 .
(1)求證:AB1⊥CC1;
(2)若AB1=3 ,D1為線段A1C1上的點(diǎn),且三棱錐C﹣B1C1D1的體積為 ,求 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的S值為﹣4,則條件框內(nèi)應(yīng)填寫( )
A.i>3?
B.i<5?
C.i>4?
D.i<4?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .(a為常數(shù),a>0) (Ⅰ)若 是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(Ⅱ)求證:當(dāng)0<a≤2時(shí),f(x)在 上是增函數(shù);
(Ⅲ)若對(duì)任意的a∈(1,2),總存在 ,使不等式f(x0)>m(1﹣a2)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(x,y)為不等式組 表示的平面區(qū)域M內(nèi)任意一點(diǎn),若目標(biāo)函數(shù)z=5x+3y的最大值等于平面區(qū)域M的面積,則m= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B分別在射線CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN= π,在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究性學(xué)習(xí)中,收集到某制藥廠今年前5個(gè)月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:
月份x | 1 | 2 | 3 | 4 | 5 |
y(萬盒) | 4 | 4 | 5 | 6 | 6 |
(1)該同學(xué)為了求出y關(guān)于x的線性回歸方程 = + ,根據(jù)表中數(shù)據(jù)已經(jīng)正確計(jì)算出 =0.6,試求出 的值,并估計(jì)該廠6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);
(2)若某藥店現(xiàn)有該制藥廠今年二月份生產(chǎn)的甲膠囊4盒和三月份生產(chǎn)的甲膠囊5盒,小紅同學(xué)從中隨機(jī)購買了3盒甲膠囊,后經(jīng)了解發(fā)現(xiàn)該制藥廠今年二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問題.記小紅同學(xué)所購買的3盒甲膠囊中存在質(zhì)量問題的盒數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com