如圖,已知矩形ABCD,B(10,6),點(diǎn)D是邊OA上的動點(diǎn),連接CD.現(xiàn)將△DOC沿CD對折,使點(diǎn)O剛好落在邊AB上的點(diǎn)E處.
(1)求
AD
BE
的值;
(2)求
S△ADE
S△BCE
的值.
分析:(1)根據(jù)矩形的對邊相等可得OA=BC,AB=OC,根據(jù)翻折的性質(zhì)可得OC=CE,OD=ED,然后利用勾股定理列式求出BE,再求出AE,然后用AD表示出DE,利用勾股定理列式求出AD,再求出比值即可;
(2)根據(jù)三角形的面積公式列式計算即可得解.
解答:解:(1)∵矩形ABCD,B(10,6),
∴OA=BC,AB=OC,
由翻折的性質(zhì),OC=CE,OD=ED,
∵∠B=90°,
∴BE=
EC2-BC2
=
102-62
=8,
∴AE=AB-BE=10-8=2,
又∵DE=OD=OA-AD=6-AD,
∴在Rt△ADE中,DE2=AD2+AE2
即(6-AD)2=AD2+22,
解得AD=
8
3

AD
BE
=
1
3
;

(2)
S△ADE
S△BCE
=
1
2
AD•AE
1
2
BC•BE
=
8
3
×2
6×8
=
1
9
點(diǎn)評:本題考查了翻折變換,矩形的性質(zhì),勾股定理的應(yīng)用,主要利用了翻折前后的圖形能夠重合的性質(zhì),利用勾股定理列出方程是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)M沿AB方向從A向B以2cm/秒的速度移動,點(diǎn)N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點(diǎn)同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當(dāng)x為何值時,△MAN為等腰直角三角形?
(2)當(dāng)x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認(rèn)為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點(diǎn)的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點(diǎn)D從點(diǎn)B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點(diǎn)A運(yùn)動.
(1)建立合適的直角坐標(biāo)系,用運(yùn)動時間t(秒)表示點(diǎn)D的坐標(biāo);
(2)過點(diǎn)D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點(diǎn)D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點(diǎn)D的過程);
(3)過點(diǎn)D、B、C作平行四邊形,當(dāng)t為何值時,由點(diǎn)C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點(diǎn)A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點(diǎn)A、C交y軸于點(diǎn)E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點(diǎn)A、B,且頂點(diǎn)G在直線y=mx+n上,拋物線與y軸交于點(diǎn)F.
(1)點(diǎn)A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊答案