如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標(biāo)系,已知AO=4,OB=1.
(1)分別求出A、B、C各點的坐標(biāo);
(2)求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1O2上?如果在,請證明;如果不在,請說明理由.
(1)∵AO=4,OB=1,
∴A、B兩點的坐標(biāo)分別為:(-4,0),(1,0),
∵∠ACB=90°,
設(shè)C點坐標(biāo)為(0,y),則AB2=AC2+BC2
即(|-4-1|)2=(-4)2+y2+12+y2,
即25=17+2y2,解得y=2(舍去)或y=-2.
故C點坐標(biāo)為(0,-2),

(2)設(shè)經(jīng)過A、B、C三點的拋物線的函數(shù)解析式為y=ax2+bx+c,
16a-4b+c=0
a+b+c=0
c=-2

解得
a=
1
2
b=
3
2
c=-2
,
故所求二次函數(shù)的解析式為y=
1
2
x2+
3
2
x-2.

(3)過C作兩圓的公切線CD交AB于D,則AD=BD=CD,由A(-4,0),B(1,0)可知D(-
3
2
,0),
設(shè)過CD兩點的直線為y=kx+b,則
-
3
2
k+b=0
b=-2
,
解得
k=-
4
3
b=-2
,
故此一次函數(shù)的解析式為y=-
4
3
x-2,
∵過O1,O2的直線必過C點且與直線y=-
4
3
x-2垂直,
故過O1,O2的直線的解析式為y=
3
4
x-2.
由(2)中所求拋物線的解析式可知拋物線的頂點坐標(biāo)為(-
3
2
,-
25
8
),
代入直線解析式得
3
4
×(-
3
2
)-2=-
25
8
,故這條拋物線的頂點落在兩圓的連心O1O2上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直),(如圖)如果拋物線的最高點M離墻1米,離地面
40
3
米,則水流下落點B離墻距離OB是( 。
A.2米B.3米C.4米D.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+bx+c與y軸交于點C,與x軸相交于A,B兩點,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,-4).
(1)求拋物線的解析式;
(2)點Q是線段OB上的動點,過點Q作QEBC,交AC于點E,連接CQ,設(shè)OQ=m,當(dāng)△CQE的面積最大時,求m的值,并寫出點Q的坐標(biāo);
(3)若平行于x軸的動直線,與該拋物線交于點P,與直線BC交于點F,D的坐標(biāo)為(-2,0),則是否存在這樣的直線l,使OD=DF?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過A(2,0)、C(0,12)兩點,且對稱軸為直線x=4.設(shè)頂點為點P,與x軸的另一交點為點B.
(1)求二次函數(shù)的解析式及頂點P的坐標(biāo);
(2)如圖1,在直線y=2x上是否存在點D,使四邊形OPBD為等腰梯形?若存在,求出點D的坐標(biāo);若不存在,請說明理由;
(3)如圖2,點M是線段OP上的一個動點(O、P兩點除外),以每秒
2
個單位長度的速度由點P向點O運動,過點M作直線MNx軸,交PB于點N.將△PMN沿直線MN對折,得到△P1MN.在動點M的運動過程中,設(shè)△P1MN與梯形OMNB的重疊部分的面積為S,運動時間為t秒.求S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年我國多個省市遭受嚴(yán)重干旱,受旱災(zāi)的影響,4月份,我市某蔬菜價格呈上升趨勢,其前四周每周的平均銷售價格變化如下表:
周數(shù)x1234
價格y(元/kg)22.22.42.6
進入5月,由于本地蔬菜的上市,此種蔬菜的平均銷售價格y(元/千克)從5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y與周數(shù)x的變化情況滿足二次函數(shù)y=-
1
20
x2+bx+c.
(1)請觀察題中的表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識直接寫出4月份y與x的函數(shù)關(guān)系式,并求出5月份y與x的函數(shù)關(guān)系式;
(2)若4月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=
1
4
x+1.2,5月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=-
1
5
x+2.試問4月份與5月份分別在哪一周銷售此種蔬菜一千克的利潤最大?且最大利潤分別是多少?
(3)若5月份的第2周共銷售100噸此種蔬菜.從5月份的第3周起,由于受暴雨的影響,此種蔬菜的可供銷量將在第2周銷量的基礎(chǔ)上每周減少a%,政府為穩(wěn)定蔬菜價格,從外地調(diào)運2噸此種蔬菜,剛好滿足本地市民的需要,且使此種蔬菜的銷售價格比第2周僅上漲0.8a%.若在這一舉措下,此種蔬菜在第3周的總銷售額與第2周剛好持平,請你參考以下數(shù)據(jù),通過計算估算出a的整數(shù)值.
(參考數(shù)據(jù):372=1369,382=1444,392=1521,402=1600,412=1681)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示是二次函數(shù)y=-x2+4x圖象上的一段,其中0≤x≤4、若矩形ABCD的兩個頂點A,B落在x軸上,另外兩個頂點C,D落在函數(shù)圖象上,則矩形ABCD的周長能否恰好為8?若能,請求出C,D兩點坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半徑為2的⊙C與x軸的正半軸交于點A,與y軸的正半軸交于點B,點C的坐標(biāo)為(1,0).若拋物線y=-
3
3
x2+bx+c過A、B兩點.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使得∠PBO=∠POB?若存在,求出點P的坐標(biāo);若不存在說明理由;
(3)若點M是拋物線(在第一象限內(nèi)的部分)上一點,△MAB的面積為S,求S的最大(小)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計算機把數(shù)據(jù)存儲在磁盤上,磁盤是帶有磁性物質(zhì)的圓盤,磁盤上有一些同心圓軌道叫做磁道.如圖,現(xiàn)有一張半徑為45mm,有
10
3
(45-r)條磁道的磁盤,這張磁盤最內(nèi)磁道的半徑為rmm.
(1)磁盤最內(nèi)磁道上每0.015mm的弧長為1個存儲單元,用r的代數(shù)式表示這條磁道有多少個存儲單元?
(2)如果各磁道的存儲單元數(shù)目與最內(nèi)磁道相同,且磁盤的存儲量是225000π個存儲單元,求最內(nèi)磁道的半徑r是多少?

查看答案和解析>>

同步練習(xí)冊答案