【題目】已知一組數(shù)據(jù)有40個(gè),把它分成六組,第一組到第四組的頻數(shù)分別是5,106,7,第五組的頻率是0.2,故第六組的頻數(shù)是_______

【答案】4

【解析】

首先根據(jù)頻率的計(jì)算公式求得第五組的頻數(shù),然后利用總數(shù)減去其它組的頻數(shù)即可求解.

第五組的頻數(shù)是40×0.2=8,

則第六組的頻數(shù)是40-5-10-6-7-8=4

故答案是:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面說法正確的是 (
A.絕對值最小的數(shù)是0
B.絕對值相等的兩個(gè)數(shù)相等
C.﹣a一定是負(fù)數(shù)
D.有理數(shù)的絕對值一定是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我們所學(xué)的課本中,多項(xiàng)式與多項(xiàng)式相乘可以用幾何圖形的面積來表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用圖(1)來表示.請你根據(jù)此方法寫出圖(2)中圖形的面積所表示的代數(shù)恒等式:____________.

【答案】(a+2b)(2a+b)=2a2+5ab+2b2

【解析】試題分析:圖的面積可以用長為a+a+b,寬為b+a+b的長方形面積求出,也可以由四個(gè)正方形與5個(gè)小長方形的面積之和求出,表示出即可.

解:根據(jù)圖形列得:(a+2b)(2a+b=2a2+5ab+2b2

故答案為:(a+2b)(2a+b=2a2+5ab+2b2

考點(diǎn):多項(xiàng)式乘多項(xiàng)式.

點(diǎn)評:此題考查了多項(xiàng)式乘以多項(xiàng)式法則,熟練掌握法則是解本題的關(guān)鍵.

型】填空
結(jié)束】
18

【題目】若一個(gè)正整數(shù)能表示為兩個(gè)正整數(shù)的平方差,則稱這個(gè)正整數(shù)為智慧數(shù)(如3=22-12,16=52-32,則316是智慧數(shù)).已知按從小到大的順序構(gòu)成如下數(shù)列:3,5,78,9,1112,13,15,1617,1920,21,2324,25則第2 013個(gè)智慧數(shù)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1先化簡,再求值:aa-2b+a+b2,其中a=-1,b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

【答案】1原式= 2a2+b2=2+2=4;(2原式=4.

【解析】試題分析:(1)利用完全平方公式展開,化簡,代入求值. (2) 利用完全平方公式展開,化簡,整體代入求值.

:(1原式=a2-2ab+a2+2ab+b2=2a2+b2.

當(dāng)a=-1,b=時(shí)原式=2+2=4.

2原式=2x2-3x+1-x2+2x+1+1=x2-5x+1=3+1=4.

型】解答
結(jié)束】
22

【題目】已知化簡(x2+px+8)(x2-3x+q)的結(jié)果中不含x2項(xiàng)和x3項(xiàng).

1)求p,q的值.

2x2-2px+3q是否是完全平方式?如果是,請將其分解因式;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=2的拋物線y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,且點(diǎn)A的坐標(biāo)為(﹣1,0)

(1)求拋物線的解析式;

(2)直接寫出B、C兩點(diǎn)的坐標(biāo);

(3)求過O,B,C三點(diǎn)的圓的面積.(結(jié)果用含π的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰上的中線把這個(gè)三角形的周長分成15㎝和12㎝,則這個(gè)三角形的底邊長為______㎝。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連接BDDP,BDCF相交于點(diǎn)H.給出下列結(jié)論:

ABE≌△DCF;;DP2=PHPB

其中正確的是____________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6 cm,BC=8 cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC=24cm,P、Q、M、N分別從A、B、C、D出發(fā),沿AD、BC、CB、DA方向在矩形的邊上同時(shí)運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)先到達(dá)所在運(yùn)動(dòng)邊的另一個(gè)端點(diǎn)時(shí),運(yùn)動(dòng)即停止、已知在相同時(shí)間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm,

(1)當(dāng)x為何值時(shí),點(diǎn)P、N重合;

(2)當(dāng)x為何值時(shí),以P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案