已知關(guān)于x的方程x2+
3
kx+k2-k+2=0,為判別這個(gè)方程根的情況,一名同學(xué)的解答過(guò)程如下:
“解:△=(
3
k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4.
∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0.
∴原方程有兩個(gè)不相等的實(shí)數(shù)根.”
請(qǐng)你判斷其解答是否正確,若有錯(cuò)誤,請(qǐng)你寫(xiě)出正確解答.
分析:此題注意在配方時(shí)別丟負(fù)號(hào);一元二次方程根的情況取決于判別式△,當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.
解答:解:解答過(guò)程不正確,
△=-k2+4k-8=-(k2-4k+8)
=-[(k-2)2-4+8]
=-(k-2)2-4
∵(k-2)2≥0,
∴-(k-2)2≤0
∴-(k-2)2-4<0
即△<0,所以方程沒(méi)有實(shí)數(shù)根.
點(diǎn)評(píng):本題考查一元二次方程根的判別式與配方的知識(shí).解題時(shí)要注意解題過(guò)程中的負(fù)號(hào)別漏掉.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、已知關(guān)于x的方程x2+kx+1=0和x2-x-k=0有一個(gè)根相同,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng))已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•西城區(qū)二模)已知關(guān)于x的方程x2+3x=8-m有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無(wú)論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰△ABC的一邊長(zhǎng)為a=6,另兩邊長(zhǎng)b,c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案