如圖4,在五邊形ABCDE中,AE⊥DE,垂足為E,∠D=150°,∠A=∠B,∠B-∠C=60°,則∠A的度數(shù)為…………………………………………………………………………(  )

A. 120°            B. 110°                C. 105°                D. 100°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題背景  某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下兩個(gè)命題:
①如圖1,O是正三角形ABC的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON=120°,則四邊形OPBQ的面積等于三角形ABC面積的三分之一.
②如圖2,O是正方形ABCD的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON=90°,則四邊形OPBQ的面積等于正方形ABCD面積的四分之一.
然后運(yùn)用類比的思想提出了如下的命題:
③如圖3,O是正五邊形ABCDE的中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON=72°,則四邊形OPBQ的面積等于五邊形ABCDE面積的五分之一.
任務(wù)要求
(1)請(qǐng)你從①、②、③三個(gè)命題中選擇一個(gè)進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:
如圖4,在正n(n≥3)邊形ABCDEF…中,O是中心,∠MON分別與AB、BC交于點(diǎn)P,Q,若∠MON 等于多少度時(shí),則四邊形OPBQ的面積等于正n邊形ABCDE…面積的n分之一?(不要求證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•山西模擬)問題背景  某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下命題:
①如圖1,在正三角形ABC中,M、N分別是AC、AB上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=60°,則BM=CN.
②如圖2,在正方形ABCD中,M、N分別是CD、AD上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=90°,則BM=CN.
然后運(yùn)用類比的思想提出了如下的命題:
③如圖3,在正五邊形ABCDE中,M、N分別是CD、DE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°,則BM=CN.

任務(wù)要求
(1)請(qǐng)你對(duì)命題③進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:如圖4,在五邊形ABCDE中,M、N分別是DE、AE上的點(diǎn),BM與CN相交于點(diǎn)O,當(dāng)∠BON=108°時(shí),請(qǐng)問結(jié)論BM=CN是否還成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀并完成填空.
九年級(jí)數(shù)學(xué)興趣小組展示了他們小組探究的過程和發(fā)現(xiàn)的結(jié)果,內(nèi)容如下:

(1)如圖1,正三角形ABC中,在AB、AC邊上分別取點(diǎn)M、N,使BM=AN,連接BN、CM,發(fā)現(xiàn)BN=CM,當(dāng)M、N改變位置且保持BM=AN時(shí),∠NOC保持不變,請(qǐng)猜測(cè)∠NOC的度數(shù):∠NOC=
60
60
度.
(2)如圖2,正方形ABCD中,在AB、BC邊上分別取點(diǎn)M、N,使AM=BN,連接AN、DM,那么AN=DM,且∠DON=
90
90
度.
(3)如圖3,正五邊形ABCDE中,在AB、BC邊上分別取點(diǎn)M、N,使AM=BN,連接AN、EM,那么AN=EM,且∠EON=
108
108
度.
(4)在正n邊形中,對(duì)相鄰的三邊實(shí)施同樣的操作過程,也會(huì)有類似的結(jié)論.請(qǐng)大膽猜測(cè),用一句話概括你的發(fā)現(xiàn):
以上所求的角恰好等于正n邊形的內(nèi)角
(n-2)•180°
n
以上所求的角恰好等于正n邊形的內(nèi)角
(n-2)•180°
n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

問題背景 某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下兩個(gè)命題

① 如圖1,在正三角形ABC中,MN分別是AC、AB上的點(diǎn),BMCN相交于點(diǎn)O,若∠BON = 60°,則BM = CN.

② 如圖2,在正方形ABCD中,M、N分別是CD、AD上的點(diǎn),BMCN相交于點(diǎn)O,若∠BON = 90°,BM = CN.

然后運(yùn)用類比的思想提出了如下的命題:

③ 如圖3,在正五邊形ABCDE中,MN分別是CD、DE上的點(diǎn),BMCN相交于點(diǎn)O,若∠BON = 108°,則BM = CN.

任務(wù)要求

(1)請(qǐng)你從①、②、③三個(gè)命題中選擇一個(gè)進(jìn)行證明;(說明:選①做對(duì)的得4分,選②做對(duì)的得3分,選③做對(duì)的得5分)

(2)請(qǐng)你繼續(xù)完成下面的探索:

① 如圖4,在正nn3)邊形ABCDEF…中,MN分別是CD、DE上的點(diǎn),BMCN相交于點(diǎn)O,問當(dāng)∠BON等于多少度時(shí),結(jié)論BM = CN成立?(不要求證明)

② 如圖5,在五邊形ABCDE中,M、N分別是DEAE上的點(diǎn),BMCN相交于點(diǎn)O,當(dāng)∠BON = 108°時(shí),請(qǐng)問結(jié)論BM = CN是否還成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.

(1)我選 .

證明:

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江西省中考真題 題型:解答題

問題背景:某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到如下兩個(gè)命題:
①如圖1,在正三角形ABC中,M、N分別是AC、AB上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=60°,則BM=CN。
②如圖2,在正方形ABCD中,M、N分別是CD、AD上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=90°,則BM=CN。
然后運(yùn)用類比的思想提出了如下的命題:
③如圖3,在正五邊形ABCDE中,M、N分別是CD、DE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°,則BM=CN。
任務(wù)要求:
(1)請(qǐng)你從①、②、③三個(gè)命題中選擇一個(gè)進(jìn)行證明;
(2)請(qǐng)你繼續(xù)完成下面的探索:
①如圖4,在正n(n≥3)邊形ABCDEF…中,M、N分別是CD、DE上的點(diǎn),BM與CN相交于點(diǎn)O,問當(dāng)∠BON等于多少度時(shí),結(jié)論BM=CN成立?(不要求證明)
②如圖5,在五邊形ABCDE中,M、N分別是DE、AE上的點(diǎn),BM與CN相交于點(diǎn)O,當(dāng)∠BON=108°時(shí),請(qǐng)問結(jié)論BM=CN是否還成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由。
(1)我選
證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案